Do you want to publish a course? Click here

Power-law Temperature Dependence of the Penetration Depth in a Topological Superconductor due to Surface States

100   0   0.0 ( 0 )
 Added by Matthew Foster
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the temperature dependence of the magnetic penetration depth in a 3D topological superconductor (TSC), incorporating the paramagnetic current due to the surface states. A TSC is predicted to host a gapless 2D surface Majorana fluid. In addition to the bulk-dominated London response, we identify a $T^3$ power-law-in-temperature contribution from the surface, valid in the low-temperature limit. Our system is fully gapped in the bulk, and should be compared to bulk nodal superconductivity, which also exhibits power-law behavior. Power-law temperature dependence of the penetration depth can be one indicator of topological superconductivity.

rate research

Read More

We report transverse field and zero field muon spin rotation studies of the superconducting rhenium oxide pyrochlore, Cd2Re2O7. Transverse field measurements (H=0.007 T) show line broadening below Tc, which is characteristic of a vortex state, demonstrating conclusively the type-II nature of this superconductor. The penetration depth is seen to level off below about 400 mK (T/Tc~0.4), with a rather large value of lambda (T=0)~7500A. The temperature independent behavior below ~ 400 mK is consistent with a nodeless superconducting energy gap. Zero-field measurements indicate no static magnetic fields developing below the transition temperature.
Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconductivity) provides a platform for exploring novel quantum phenomena and new functionalities, such as 1D chiral or helical gapless Majorana fermions, and Majorana zero modes which may find application in fault-tolerant quantum computation. Inducing superconductivity on topological surface states is a prerequisite for their experimental realization. Here by growing high quality topological insulator Bi$_2$Se$_3$ films on a d-wave superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ using molecular beam epitaxy, we are able to induce high temperature superconductivity on the surface states of Bi$_2$Se$_3$ films with a large pairing gap up to 15 meV. Interestingly, distinct from the d-wave pairing of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step toward the realization of the long sought-after Majorana zero modes.
In high-T$_{C}$ cuprates, superconductivity and charge density waves (CDW) are competitive, yet coexisting orders. To understand their microscopic interdependence a probe capable of discerning their interaction on its natural length and time scales is necessary. Here we use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa$_{2}$Cu$_{3}$O$_{6+x}$ following the quench of superconductivity by an infrared laser pulse. We observe a picosecond non-thermal response of the CDW order, characterized by a large enhancement of spatial coherence, nearly doubling the CDW correlation length, while only marginally affecting its amplitude. This ultrafast snapshot of the interaction between order parameters demonstrates that their competition manifests inhomogeneously through disruption of spatial coherence, and indicates the role of superconductivity in stabilizing topological defects within CDW domains.
The diversity of emergent phenomena in quantum materials often arises from the interplay between different physical energy scales or broken symmetries. Cooperative interactions among them are rare; however, when they do occur, they often stabilize fundamentally new ground states or phase behaviors. For instance, a pair density wave can form when the superconducting order parameter borrows spatial periodical variation from charge order; a topological superconductor can arise when topologically nontrivial electronic states proximitize with or participate in the formation of the superconducting condensate. Here, we report spectroscopic evidence for a unique synergy of topology and correlation effects in the kagome superconductor CsV$_3$Sb$_5$ - one where topologically nontrivial surface states are pushed below the Fermi energy (E$_F$) by charge order, making the topological physics active near E$_F$ upon entering the superconducting state. Flat bands are observed, indicating that electron correlation effects are also at play in this system. Our results reveal the peculiar electronic structure of CsV$_3$Sb$_5$, which holds the potential for realizing Majorana zero modes and anomalous superconducting states in kagome lattices. They also establish CsV$_3$Sb$_5$ as a unique platform for exploring the cooperation between the charge order, topology, correlation effects and superconductivity.
One of the features of the unconventional $s_pm$ state in iron-based superconductors is possibility to transform to the $s_{++}$ state with the increase of the nonmagnetic disorder. Detection of such a transition would prove the existence of the $s_pm$ state. Here we study the temperature dependence of the London magnetic penetration depth within the two-band model for the $s_pm$ and $s_{++}$ superconductors. By solving Eliashberg equations accounting for the spin-fluctuation mediated pairing and nonmagnetic impurities in the $T$-matrix approximation, we have derived a set of specific signatures of the $s_pm to s_{++}$ transition: (1) sharp change in the behavior of the penetration depth $lambda_{L}$ as a function of the impurity scattering rate at low temperatures; (2) before the transition, the slope of $Delta lambda_{L}(T) = lambda_{L}(T)-lambda_{L}(0)$ increases as a function of temperature, and after the transition this value decreases; (3) the sharp jump in the inverse square of the penetration depth as a function of the impurity scattering rate, $lambda_{L}^{-2}(Gamma_a)$, at the transition; (4) change from the single-gap behavior in the vicinity of the transition to the two-gap behavior upon increase of the impurity scattering rate in the superfluid density $rho_{s}(T)$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا