No Arabic abstract
Many interdependent, real-world infrastructures involve interconnections between different communities or cities. Here we study if and how the effects of such interconnections can be described as an external field for interdependent networks experiencing first-order percolation transitions. We find that the critical exponents $gamma$ and $delta$, related to the external field can also be defined for first-order transitions but that they have different values than those found for second-order transitions. Surprisingly, we find that both sets of different exponents can be found even within a single model of interdependent networks, depending on the dependency coupling strength. Specifically, the exponent $gamma$ in the first-order regime (high coupling) does not obey the fluctuation dissipation theorem, whereas in the continuous regime (for low coupling) it does. Nevertheless, in both cases they satisfy Widoms identity, $delta - 1 = gamma / beta$ which further supports the validity of their definitions. Our results provide physical intuition into the nature of the phase transition in interdependent networks and explain the underlying reasons for two distinct sets of exponents.
In this work we tackle a kinetic-like model of opinions dynamics in a networked population endued with a quenched plurality and polarization. Additionally, we consider pairwise interactions that are restrictive, which is modeled with a smooth bounded confidence. Our results show the interesting emergence of nonequilibrium hysteresis and heterogeneity-assisted ordering. Such counterintuitive phenomena are robust to different types of network architectures such as random, small-world and scale-free.
In a system of interdependent networks, an initial failure of nodes invokes a cascade of iterative failures that may lead to a total collapse of the whole system in a form of an abrupt first order transition. When the fraction of initial failed nodes $1-p$ reaches criticality, $p=p_c$, the abrupt collapse occurs by spontaneous cascading failures. At this stage, the giant component decreases slowly in a plateau form and the number of iterations in the cascade, $tau$, diverges. The origin of this plateau and its increasing with the size of the system remained unclear. Here we find that simultaneously with the abrupt first order transition a spontaneous second order percolation occurs during the cascade of iterative failures. This sheds light on the origin of the plateau and on how its length scales with the size of the system. Understanding the critical nature of the dynamical process of cascading failures may be useful for designing strategies for preventing and mitigating catastrophic collapses.
Many real-world complex systems are best modeled by multiplex networks. The multiplexity has proved to have broad impact on the systems structure and function. Most theoretical studies on multiplex networks to date, however, have largely ignored the effect of link overlap across layers despite strong empirical evidences for its significance. In this article, we investigate the effect of link overlap in the viability of multiplex networks, both analytically and numerically. Distinctive role of overlapping links in viability and mutual connectivity is emphasized and exploited for setting up proper analytic framework. A rich phase diagram for viability is obtained and greatly diversified patterns of hysteretic behavior in viability are observed in the presence of link overlap. Mutual percolation with link overlap is revisited as a limit of multiplex viability problem, and controversy between existing results is clarified. The distinctive role of overlapping links is further demonstrated by the different responses of networks under random removals of overlapping and non-overlapping links, respectively, as well as under several removal strategies. Our results show that the link overlap strongly facilitates viability and mutual percolation; at the same time, the presence of link overlap poses challenge in analytical approach to the problem.
Percolation theory is an approach to study vulnerability of a system. We develop analytical framework and analyze percolation properties of a network composed of interdependent networks (NetONet). Typically, percolation of a single network shows that the damage in the network due to a failure is a continuous function of the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading failures, the percolation transition may be discontinuous and even a single node failure may lead to abrupt collapse of the system. We demonstrate our general framework for a NetONet composed of $n$ classic ErdH{o}s-R{e}nyi (ER) networks, where each network depends on the same number $m$ of other networks, i.e., a random regular network of interdependent ER networks. In contrast to a emph{treelike} NetONet in which the size of the largest connected cluster (mutual component) depends on $n$, the loops in the RR NetONet cause the largest connected cluster to depend only on $m$. We also analyzed the extremely vulnerable feedback condition of coupling. In the case of ER networks, the NetONet only exhibits two phases, a second order phase transition and collapse, and there is no first phase transition regime unlike the no feedback condition. In the case of NetONet composed of RR networks, there exists a first order phase transition when $q$ is large and second order phase transition when $q$ is small. Our results can help in designing robust interdependent systems.
Real data show that interdependent networks usually involve inter-similarity. Intersimilarity means that a pair of interdependent nodes have neighbors in both networks that are also interdependent (Parshani et al cite{PAR10B}). For example, the coupled world wide port network and the global airport network are intersimilar since many pairs of linked nodes (neighboring cities), by direct flights and direct shipping lines exist in both networks. Nodes in both networks in the same city are regarded as interdependent. If two neighboring nodes in one network depend on neighboring nodes in the another we call these links common links. The fraction of common links in the system is a measure of intersimilarity. Previous simulation results suggest that intersimilarity has considerable effect on reducing the cascading failures, however, a theoretical understanding on this effect on the cascading process is currently missing. Here, we map the cascading process with inter-similarity to a percolation of networks composed of components of common links and non common links. This transforms the percolation of inter-similar system to a regular percolation on a series of subnetworks, which can be solved analytically. We apply our analysis to the case where the network of common links is an ErdH{o}s-R{e}nyi (ER) network with the average degree $K$, and the two networks of non-common links are also ER networks. We show for a fully coupled pair of ER networks, that for any $Kgeq0$, although the cascade is reduced with increasing $K$, the phase transition is still discontinuous. Our analysis can be generalized to any kind of interdependent random networks system.