Do you want to publish a course? Click here

Re-entrant phase separation in nematically aligning active polar particles

121   0   0.0 ( 0 )
 Added by Debasish Chaudhuri
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a numerical study of the phase behavior of repulsively interacting active polar particles that align their active velocities nematically. The amplitude of the active velocity, and the noise in its orientational alignment control the active nature of the system. At high values of orientational noise, the structural fluid undergoes a continuous nematic-isotropic transition in active orientation. This transition is well separated from an active phase separation, characterized by the formation of high density hexatic clusters, observed at lower noise strengths. With increasing activity, the system undergoes a re-entrant fluid-phase separation-fluid transition. The phase coexistence at low activity can be understood in terms of motility induced phase separation. In contrast, the re-melting of hexatic clusters, and the collective motion at low orientational noise are dominated by flocking behavior. At high activity, sliding and jamming of polar sub-clusters, formation of grain boundaries, lane formation, and subsequent fragmentation of the polar patches mediate remelting.

rate research

Read More

207 - Zhan Ma , Ran Ni 2021
Using computer simulations and dynamic mean-field theory, we demonstrate that fast enough rotation of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional motility induced phase separation (MIPS). Multiple clusters arise from the combination of the conventional MIPS cohesion, and the circulating current caused disintegration. The non-vanishing current in non-equilibrium steady states microscopically originates from the motility ``relieved by automatic rotation, which breaks the detailed balance at the continuum level. This mechanism sheds light on the understanding of dynamic clusters formation observed in a variety of active matter systems, and may help examine the generalization of effective thermodynamic concepts developed in the context of MIPS.
Despite their fundamentally non-equilibrium nature, the individual and collective behavior of active systems with polar propulsion and isotropic interactions (polar-isotropic active systems) are remarkably well captured by equilibrium mapping techniques. Here we examine two signatures of equilibrium systems -- the existence of a local free energy function and the independence of the coarse- grained behavior on the details of the microscopic dynamics -- in polar-isotropic active particles confined by hard walls of arbitrary geometry at the one-particle level. We find that boundaries that possess concave regions make the density profile strongly dynamics-dependent and give it a nonlocal dependence on the geometry of the confining box. This in turn constrains the scope of equilibrium mapping techniques in polar-isotropic active systems.
We investigate the phase behavior and kinetics of a monodisperse mixture of active (textit{i.e.}, self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the active component triggers phase separation into a dense and a dilute phase; in the dense phase we further find active-passive segregation, with rafts of passive particles in a sea of active particles. We find that phase separation from an initially disordered mixture can occur with as little as 15 percent of the particles being active. Finally, we show that a system prepared in a suitable fully segregated initial state reproducibly self-assembles an active corona which triggers crystallization of the passive core by initiating a compression wave. Our findings are relevant to the experimental pursuit of directed self-assembly using active particles.
Active Brownian particles display self-propelled movement, which can be modelled as arising from a one-body force. Although their interparticle interactions are purely repulsive, for strong self propulsion the swimmers phase separate into dilute and dense phases. We describe in detail a recent theory (Phys. Rev. E 100, 052604 (2019); Phys. Rev. Lett. 128, 26802 (2019)) for such motility induced phase-separation. Starting from the continuity equation and the force density balance, the description is based on four superadiabatic contributions to the internal force density. Here the superadiabatic forces are due to the flow in the system and they act on top of the adiabatic forces that arise from the equilibrium free energy. Phase coexistence is described by bulk state functions and agrees quantitatively with Brownian dynamics simulation results from the literature. We describe in detail all analytical steps to fully resolve the spatial and orientational dependence of the one-body density and current. The decomposition into angular Fourier series leads to coupling of total density, polarization and all higher modes. We describe the power functional approach, including the kinematic dependence of the superadiabatic force fields and the quiet life effect that pushes particles from fast to slow regions, and hence induces the phase separation.
73 - Zahra Fazli , Ali Naji 2020
We study steady-state properties of a suspension of active, nonchiral and chiral, Brownian particles with polar alignment and steric interactions confined within a ring-shaped (annulus) confinement in two dimensions. Exploring possible interplays between polar interparticle alignment, geometric confinement and the surface curvature, being incorporated here on minimal levels, we report a surface-population reversal effect, whereby active particles migrate from the outer concave boundary of the annulus to accumulate on its inner convex boundary. This contrasts the conventional picture, implying stronger accumulation of active particles on concave boundaries relative to the convex ones. The population reversal is caused by both particle alignment and surface curvature, disappearing when either of these factors is absent. We explore the ensuing consequences for the chirality-induced current and swim pressure of active particles and analyze possible roles of system parameters, such as the mean number density of particles and particle self-propulsion, chirality and alignment strengths.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا