Do you want to publish a course? Click here

Average shape of longitudinal shower profiles measured at the Pierre Auger Observatory

90   0   0.0 ( 0 )
 Added by Sofia Andringa
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The average profiles of cosmic ray shower development as a function of atmospheric depth are measured for the first time with the Fluorescence Detectors at the Pierre Auger Observatory. The profile shapes are well reproduced by the Gaisser-Hillas parametrization at the 1% level in a 500 g/cm2 interval around the shower maximum, for cosmic rays with log(E/eV) > 17.8. The results are quantified with two shape parameters, measured as a function of energy. The average profiles carry information on the primary cosmic ray and its high energy hadronic interactions. The shape parameters predicted by the commonly used models are compatible with the measured ones within experimental uncertainties. Those uncertainties are dominated by systematics which, at present, prevent a detailed composition analysis.



rate research

Read More

The profile of the longitudinal development of showers produced by ultra-high energy cosmic rays carries information related to the interaction properties of the primary particles with atmospheric nuclei. In this work, we present the first measurement of the average shower profile in traversed atmospheric depth at the Pierre Auger Observatory. The shapes of profiles are well reproduced by the Gaisser-Hillas parametrization within the range studied, for E > 10^{17.8} eV. A detailed analysis of the systematic uncertainties is performed using 10 years of data and a full detector simulation. The average shape is quantified using two variables related to the width and asymmetry of the profile, and the results are compared with predictions of hadronic interaction models for different primary particles.
162 - Laura Valore 2014
The Fluorescence Detector (FD) of the Pierre Auger Observatory provides a nearly calorimetric measurement of the primary particle energy, since the fluorescence light produced is proportional to the energy dissipated by an Extensive Air Shower (EAS) in the atmosphere. The atmosphere therefore acts as a giant calorimeter, whose properties need to be well known during data taking. Aerosols play a key role in this scenario, since their effect on light transmission is highly variable even on a time scale of one hour, and the corresponding correction to EAS energy can range from a few percent to more than 40%. For this reason, hourly Vertical Aerosol Optical Depth (taer(h)) profiles are provided for each of the four FD stations. Starting from 2004, up to now 9 years of taer(h) profiles have been produced using data from the Central Laser Facility (CLF) and the eXtreme Laser Facility (XLF) of the Pierre Auger Observatory. The two laser facilities, the techniques developed to measure taer(h) profiles using laser data and the results will be discussed.
We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.
76 - David Schmidt 2021
The characteristics of an extensive air shower derive from both the mass of the primary ultra-high-energy cosmic ray that seeds its development and the properties of the hadronic interactions that feed it. With its hybrid detector design, the Pierre Auger Observatory measures both the longitudinal development of showers in the atmosphere and the lateral distribution of particles arriving at the ground, from which a number of parameters are calculated and compared with predictions from current hadronic interaction models tuned to LHC data. At present, a tension exists concerning the production of muons, in that the measured abundance exceeds all predictions. This discrepancy, measured up to center-of-mass energies of $sim$ 140 TeV, is irresolvable through mass composition arguments, constrained by measurements of the depth of the electromagnetic-shower maximum. Here, we discuss a compilation of hadronically-sensitive shower observables and their comparisons with model predictions and conclude with a brief discussion of what measurements with the new detectors of the AugerPrime upgrade will bring to the table.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا