Laser frequency can be upconverted in a plasma undergoing ionization. For finite ionization rates, the laser pulse energy is partitioned into a pair of counter-propagating waves and static transverse currents. The wave amplitudes are determined by the ionization rates and the input pulse duration. The strongest output waves can be obtained when the plasma is fully ionized in a time that is shorter than the pulse duration. The static transverse current can induce a static magnetic field with instant ionization, but it dissipates as heat if the ionization time is longer than a few laser periods. This picture comports with experimental data, providing a description of both laser frequency upconverters as well as other laser-plasma interaction with evolving plasma densities.