Do you want to publish a course? Click here

The Energetics of Molecular Adaptation in Transcriptional Regulation

100   0   0.0 ( 0 )
 Added by Griffin Chure
 Publication date 2019
  fields Biology
and research's language is English




Ask ChatGPT about the research

Mutation is a critical mechanism by which evolution explores the functional landscape of proteins. Despite our ability to experimentally inflict mutations at will, it remains difficult to link sequence-level perturbations to systems-level responses. Here, we present a framework centered on measuring changes in the free energy of the system to link individual mutations in an allosteric transcriptional repressor to the parameters which govern its response. We find the energetic effects of the mutations can be categorized into several classes which have characteristic curves as a function of the inducer concentration. We experimentally test these diagnostic predictions using the well-characterized LacI repressor of Escherichia coli, probing several mutations in the DNA binding and inducer binding domains. We find that the change in gene expression due to a point mutation can be captured by modifying only a subset of the model parameters that describe the respective domain of the wild-type protein. These parameters appear to be insulated, with mutations in the DNA binding domain altering only the DNA affinity and those in the inducer binding domain altering only the allosteric parameters. Changing these subsets of parameters tunes the free energy of the system in a way that is concordant with theoretical expectations. Finally, we show that the induction profiles and resulting free energies associated with pairwise double mutants can be predicted with quantitative accuracy given knowledge of the single mutants, providing an avenue for identifying and quantifying epistatic interactions.



rate research

Read More

249 - J. M. Deutsch 2014
We study genetic networks that produce many species of non-coding RNA molecules that are present at a moderate density, as typically exists in the cell. The associations of the many species of these RNA are modeled physically, taking into account the equilibrium constants between bound and unbound states. By including the pair-wise binding of the many RNA species, the network becomes highly interconnected and shows different properties than the usual type of genetic network. It shows much more robustness to mutation, and also rapid evolutionary adaptation in an environment that oscillates in time. This provides a possible explanation for the weak evolutionary constraints seen in much of the non-coding RNA that has been studied.
In recent years, functional genomics approaches combining genetic information with bulk RNA-sequencing data have identified the downstream expression effects of disease-associated genetic risk factors through so-called expression quantitative trait locus (eQTL) analysis. Single-cell RNA-sequencing creates enormous opportunities for mapping eQTLs across different cell types and in dynamic processes, many of which are obscured when using bulk methods. The enormous increase in throughput and reduction in cost per cell now allow this technology to be applied to large-scale population genetics studies. Therefore, we have founded the single-cell eQTLGen consortium (sc-eQTLGen), aimed at pinpointing disease-causing genetic variants and identifying the cellular contexts in which they affect gene expression. Ultimately, this information can enable development of personalized medicine. Here, we outline the goals, approach, potential utility and early proofs-of-concept of the sc-eQTLGen consortium. We also provide a set of study design considerations for future single-cell eQTL studies.
One of the outstanding challenges in comparative genomics is to interpret the evolutionary importance of regulatory variation between species. Rigorous molecular evolution-based methods to infer evidence for natural selection from expression data are at a premium in the field, and to date, phylogenetic approaches have not been well-suited to address the question in the small sets of taxa profiled in standard surveys of gene expression. We have developed a strategy to infer evolutionary histories from expression profiles by analyzing suites of genes of common function. In a manner conceptually similar to molecular evolution models in which the evolutionary rates of DNA sequence at multiple loci follow a gamma distribution, we modeled expression of the genes of an emph{a priori}-defined pathway with rates drawn from an inverse gamma distribution. We then developed a fitting strategy to infer the parameters of this distribution from expression measurements, and to identify gene groups whose expression patterns were consistent with evolutionary constraint or rapid evolution in particular species. Simulations confirmed the power and accuracy of our inference method. As an experimental testbed for our approach, we generated and analyzed transcriptional profiles of four emph{Saccharomyces} yeasts. The results revealed pathways with signatures of constrained and accelerated regulatory evolution in individual yeasts and across the phylogeny, highlighting the prevalence of pathway-level expression change during the divergence of yeast species. We anticipate that our pathway-based phylogenetic approach will be of broad utility in the search to understand the evolutionary relevance of regulatory change.
Recent years have witnessed an increasing interest in neuron-glia communication. This interest stems from the realization that glia participates in cognitive functions and information processing and is involved in many brain disorders and neurodegenerative diseases. An important process in neuron-glia communications is astrocyte encoding of synaptic information transfer: the modulation of intracellular calcium dynamics in astrocytes in response to synaptic activity. Here, we derive and investigate a concise mathematical model for glutamate-induced astrocytic intracellular Ca2+ dynamics that captures the essential biochemical features of the regulatory pathway of inositol 1,4,5-trisphosphate (IP3). Starting from the well-known two-state Li-Rinzel model for calcium-induced-calcium release, we incorporate the regulation of the IP3 production and phosphorylation. Doing so we extended it to a three-state model (referred as the G-ChI model), that could account for Ca2+ oscillations triggered by endogenous IP3 metabolism as well as by IP3 production by external glutamate signals. Compared to previous similar models, our three-state models include a more realistic description of the IP3 production and degradation pathways, lumping together their essential nonlinearities within a concise formulation. Using bifurcation analysis and time simulations, we demonstrate the existence of new putative dynamical features. The cross-couplings between IP3 and Ca2+ pathways endows the system with self-consistent oscillator properties and favor mixed frequency-amplitude encoding modes over pure amplitude modulation ones. These and additional results of our model are in general agreement with available experimental data and may have important implications on the role of astrocytes in the synaptic transfer of information.
Rule-based modeling is a powerful way to model kinetic interactions in biochemical systems. Rules enable a precise encoding of biochemical interactions at the resolution of sites within molecules, but obtaining an integrated global view from sets of rules remains challenging. Current automated approaches to rule visualization fail to address the complexity of interactions between rules, limiting either the types of rules that are allowed or the set of interactions that can be visualized simultaneously. There is a need for scalable visualization approaches that present the information encoded in rules in an intuitive and useful manner at different levels of detail. We have developed new automated approaches for visualizing both individual rules and complete rule-based models. We find that a more compact representation of an individual rule promotes promotes understanding the model assumptions underlying each rule. For global visualization of rule interactions, we have developed a method to synthesize a network of interactions between sites and processes from a rule-based model and then use a combination of user-defined and automated approaches to compress this network into a readable form. The resulting diagrams enable modelers to identify signaling motifs such as cascades, feedback loops, and feed-forward loops in complex models, as we demonstrate using several large-scale models. These capabilities are implemented within the BioNetGen framework but the approach is equally applicable to rule-based models specified in other formats.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا