No Arabic abstract
Miners play a key role in cryptocurrencies such as Bitcoin: they invest substantial computational resources in processing transactions and minting new currency units. It is well known that an attacker controlling more than half of the networks mining power could manipulate the state of the system at will. While the influence of large mining pools appears evenly split, the actual distribution of mining power within these pools and their economic relationships with other actors remain undisclosed. To this end, we conduct the first in-depth analysis of mining reward distribution within three of the four largest Bitcoin mining pools and examine their cross-pool economic relationships. Our results suggest that individual miners are simultaneously operating across all three pools and that in each analyzed pool a small number of actors (<= 20) receives over 50% of all BTC payouts. While the extent of an operators control over the resources of a mining pool remains an open debate, our findings are in line with previous research, pointing out centralization tendencies in large mining pools and cryptocurrencies in general.
Grovers algorithm confers on quantum computers a quadratic advantage over classical computers for searching in an arbitrary data set, a scenario that describes Bitcoin mining. It has previously been argued that the only side-effect of quantum mining would be an increased difficulty. In this work, we argue that a crucial argument in the analysis of Bitcoin security breaks down when quantum mining is performed. Classically, a Bitcoin fork occurs rarely, i.e., when two miners find a block almost simultaneously, due to propagation time effects. The situation differs dramatically when quantum miners use Grovers algorithm, which repeatedly applies a procedure called a Grover iteration. The chances of finding a block grow quadratically with the number of Grover iterations applied. Crucially, a miner does not have to choose how many iterations to apply in advance. Suppose Alice receives Bobs new block. To maximize her revenue, she should stop and measure her state immediately in the hopes that her block (rather than Bobs) will become part of the longest chain. The strong correlation between the miners actions and the fact that they all measure their states at the same time may lead to more forks -- which is known to be a security risk for Bitcoin. We propose a mechanism that, we conjecture, will prevent this form of quantum mining, thereby circumventing the high rate of forks.
Bitcoin has become the leading cryptocurrency system, but the limit on its transaction processing capacity has resulted in increased transaction fees and delayed transaction confirmation. As such, it is pertinent to understand and probably predict how transactions are handled by Bitcoin such that a user may adapt the transaction requests and a miner may adjust the block generation strategy and/or the mining pool to join. To this aim, the present paper introduces results from an analysis of transaction handling in Bitcoin. Specifically, the analysis consists of two-part. The first part is an exploratory data analysis revealing key characteristics in Bitcoin transaction handling. The second part is a predictability analysis intended to provide insights on transaction handling such as (i) transaction confirmation time, (ii) block attributes, and (iii) who has created the block. The result shows that some models do reasonably well for (ii), but surprisingly not for (i) or (iii).
Mining is the important part of the blockchain used the proof of work (PoW) on its consensus, looking for the matching block through testing a number of hash calculations. In order to attract more hash computing power, the miner who finds the proper block can obtain some rewards. Actually, these hash calculations ensure that the data of the blockchain is not easily tampered. Thus, the incentive mechanism for mining affects the security of the blockchain directly. This paper presents an approach to attack against the difficulty adjustment algorithm (abbreviated as DAA) used in blockchain mining, which has a direct impact on miners earnings. In this method, the attack miner jumps between different blockchains to get more benefits than the honest miner who keep mining on only one blockchain. We build a probabilistic model to simulate the time to obtain the next block at different hash computing power called hashrate. Based on this model, we analyze the DAAs of the major cryptocurrencies, including Bitcoin, Bitcoin Cash, Zcash, and Bitcoin Gold. We further verify the effectiveness of this attack called jumping mining through simulation experiments, and also get the characters for the attack in the public block data of Bitcoin Gold. Finally, we give an improved DAA scheme against this attack. Extensive experiments are provided to support the efficiency of our designed scheme.
In late 2017, a sudden proliferation of malicious JavaScript was reported on the Web: browser-based mining exploited the CPU time of website visitors to mine the cryptocurrency Monero. Several studies measured the deployment of such code and developed defenses. However, previous work did not establish how many users were really exposed to the identified mining sites and whether there was a real risk given common user browsing behavior. In this paper, we present a retroactive analysis to close this research gap. We pool large-scale, longitudinal data from several vantage points, gathered during the prime time of illicit cryptomining, to measure the impact on web users. We leverage data from passive traffic monitoring of university networks and a large European ISP, with suspected mining sites identified in previous active scans. We corroborate our results with data from a browser extension with a large user base that tracks site visits. We also monitor open HTTP proxies and the Tor network for malicious injection of code. We find that the risk for most Web users was always very low, much lower than what deployment scans suggested. Any exposure period was also very brief. However, we also identify a previously unknown and exploited attack vector on mobile devices.
We study efficiency in a proof-of-work blockchain with non-zero latencies, focusing in particular on the (inequality in) individual miners efficiencies. Prior work attributed differences in miners efficiencies mostly to attacks, but we pursue a different question: Can inequality in miners efficiencies be explained by delays, even when all miners are honest? Traditionally, such efficiency-related questions were tackled only at the level of the overall system, and in a peer-to-peer (P2P) setting where miners directly connect to one another. Despite it being common today for miners to pool compute capacities in a mining pool managed by a centralized coordinator, efficiency in such a coordinated setting has barely been studied. In this paper, we propose a simple model of a proof-of-work blockchain with latencies for both the P2P and the coordinated settings. We derive a closed-form expression for the efficiency in the coordinated setting with an arbitrary number of miners and arbitrary latencies, both for the overall system and for each individual miner. We leverage this result to show that inequalities arise from variability in the delays, but that if all miners are equidistant from the coordinator, they have equal efficiency irrespective of their compute capacities. We then prove that, under a natural consistency condition, the overall system efficiency in the P2P setting is higher than that in the coordinated setting. Finally, we perform a simulation-based study to demonstrate that even in the P2P setting delays between miners introduce inequalities, and that there is a more complex interplay between delays and compute capacities.