Do you want to publish a course? Click here

Observation of indirect ionization of W7+ in an electron-beam ion-trap plasma

102   0   0.0 ( 0 )
 Added by Qifeng Lu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, visible and extreme ultraviolet spectra of W7+ are measured using the high-temperature superconducting electron-beam ion trap (EBIT) at the Shanghai EBIT Laboratory under extremely low-energy conditions (lower than the nominal electron-beam energy of 130 eV). The relevant atomic structure is calculated using the flexible atomic code package based on the relativistic configuration interaction method. The GRASP2K code, in the framework of the multiconfiguration Dirac-Hartree-Fock method, is employed as well for calculating the wavelength of the M1 transition in the ground configuration of W7+. A line from the W7+ ions is observed at a little higher electron-beam energy than the ionization potential for W4+, making this line appear to be from W5+. A hypothesis for the charge-state evolution of W7+ is proposed based on our experimental and theoretical results; that is, the occurrence of W7+ ions results from indirect ionization caused by stepwise excitation between some metastable states of lower-charge-state W ions, at the nominal electron-beam energy of 59 eV.



rate research

Read More

122 - Q. Lu , C. L. Yan , J. Meng 2021
To provide spectroscopic data for lowly charged tungsten ions relevant to fusion research, this work focuses on the W8+ ion. Six visible spectra lines in the range of 420-660 nm are observed with a compact electron-beam ion trap in Shanghai. These lines are assigned to W8+ based on their intensity variations as increasing electron-beam energy and the M1 line from the ground configuration in W7+. Furthermore, transition energies are calculated for the 30 lowest levels of the 4f14 5s2 5p4, 4f13 5s2 5p5 and 4f12 5s2 5p6 configurations of W8+ by using the flexible atomic code (FAC) and GRASP package, respectively. Reasonably good agreement is found between our two independent atomic-structure calculations. The resulting atomic parameters are adopted to simulate the spectra based on the collisional-radiative model implemented in the FAC code. This assists us with identification of six strong M1 transitions in 4f13 5s2 5p5 and 4f12 5s2 5p6 configurations from our experiments
We experimentally re-evaluate the fine structure of Sn$^{11+...14+}$ ions. These ions are essential in bright extreme-ultraviolet (EUV) plasma-light sources for next-generation nanolithography, but their complex electronic structure is an open challenge for both theory and experiment. We combine optical spectroscopy of magnetic dipole $M1$ transitions, in a wavelength range covering 260,nm to 780,nm, with charge-state selective ionization in an electron beam ion trap. Our measurements confirm the predictive power of emph{ab initio} calculations based on Fock space coupled cluster theory. We validate our line identification using semi-empirical Cowan calculations with adjustable wavefunction parameters. Available Ritz combinations further strengthen our analysis. Comparison with previous work suggests that line identifications in the EUV need to be revisited.
We demonstrate a method for loading surface electrode ion traps by electron impact ionization. The method relies on the property of surface electrode geometries that the trap depth can be increased at the cost of more micromotion. By introducing a buffer gas, we can counteract the rf heating assocated with the micromotion and benefit from the larger trap depth. After an initial loading of the trap, standard compensation techniques can be used to cancel the stray fields resulting from charged dielectric and allow for the loading of the trap at ultra-high vacuum.
In this paper, direct observation of micromotion for multiple ions in a laser-cooled trapped ion crystal is discussed along with a novel measurement technique for micromotion amplitude. Micromotion is directly observed using a time-resolving, single-photon sensitive camera that provides both fluorescence and position data for each ion on the nanosecond time scale. Micromotion amplitude and phase for each ion in the crystal are measured, allowing this method to be sensitive to tilts and shifts of the ion chain from the null of the radiofrequency quadrupole potential in the linear trap. Spatial resolution makes this micromotion detection technique suitable for complex ion configurations, including two-dimensional geometries. It does not require any additional equipment or laser beams, and the modulation of the cooling lasers or trap voltages is not necessary for detection, as it is in other methods.
A low-energy, compact and superconducting electron beam ion trap (the Shanghai-Wuhan EBIT or SW-EBIT) for extraction of highly charged ions is presented. The magnetic field in the central drift tube of the SW-EBIT is approximately 0.21 T produced by a pair of high-temperature superconducting coils. The electron-beam energy of the SW-EBIT is in the range of 30-4000 eV, and the maximum electron-beam current is up to 9 mA. Acting as a source of highly charged ions, the ion-beam optics for extraction is integrated, including an ion extractor and an einzel lens. A Wien filter is then used to measure the charge-state distribution of the extracted ions. In this work, the tungsten ions below the charge state of 15 have been produced, extracted, and analyzed. The charge-state distributions and spectra in the range of 530-580 nm of tungsten ions have been measured simultaneously with the electron-beam energy of 279 eV and 300 eV, which preliminarily indicates that the 549.9 nm line comes from $W^{14+}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا