Hybrid ED/DMRG approach to the thermodynamics of 1D quantum models


Abstract in English

Exact diagonalization (ED) of small model systems gives the thermodynamics of spin chains or quantum cell models at high temperature $T$. Density matrix renormalization group (DMRG) calculations of progressively larger systems are used to obtain excitations up to a cutoff $W_C$ and the low-$T$ thermodynamics. The hybrid approach is applied to the magnetic susceptibility $chi(T)$ and specific heat $C(T)$ of spin-$1/2$ chains with isotropic exchange such as the linear Heisenberg antiferromagnet (HAF) and the frustrated $J_1-J_2$ model with ferromagnetic (F) $J_1 < 0$ and antiferromagnetic (AF) $J_2 > 0$. The hybrid approach is fully validated by comparison with HAF results. It extends $J_1-J_2$ thermodynamics down to $T sim 0.01|J_1|$ for $J_2/|J_1| geq alpha_c = 1/4$ and is consistent with other methods. The criterion for the cutoff $W_C(N)$ in systems of $N$ spins is discussed. The cutoff leads to bounds for the thermodynamic limit that are best satisfied at a specific $T(N)$ at system size $N$.

Download