No Arabic abstract
Sequence-to-sequence models are a powerful workhorse of NLP. Most variants employ a softmax transformation in both their attention mechanism and output layer, leading to dense alignments and strictly positive output probabilities. This density is wasteful, making models less interpretable and assigning probability mass to many implausible outputs. In this paper, we propose sparse sequence-to-sequence models, rooted in a new family of $alpha$-entmax transformations, which includes softmax and sparsemax as particular cases, and is sparse for any $alpha > 1$. We provide fast algorithms to evaluate these transformations and their gradients, which scale well for large vocabulary sizes. Our models are able to produce sparse alignments and to assign nonzero probability to a short list of plausible outputs, sometimes rendering beam search exact. Experiments on morphological inflection and machine translation reveal consistent gains over dense models.
Machine Comprehension (MC) is one of the core problems in natural language processing, requiring both understanding of the natural language and knowledge about the world. Rapid progress has been made since the release of several benchmark datasets, and recently the state-of-the-art models even surpass human performance on the well-known SQuAD evaluation. In this paper, we transfer knowledge learned from machine comprehension to the sequence-to-sequence tasks to deepen the understanding of the text. We propose MacNet: a novel encoder-decoder supplementary architecture to the widely used attention-based sequence-to-sequence models. Experiments on neural machine translation (NMT) and abstractive text summarization show that our proposed framework can significantly improve the performance of the baseline models, and our method for the abstractive text summarization achieves the state-of-the-art results on the Gigaword dataset.
Copy mechanisms are employed in sequence to sequence models (seq2seq) to generate reproductions of words from the input to the output. These frameworks, operating at the lexical type level, fail to provide an explicit alignment that records where each token was copied from. Further, they require contiguous token sequences from the input (spans) to be copied individually. We present a model with an explicit token-level copy operation and extend it to copying entire spans. Our model provides hard alignments between spans in the input and output, allowing for nontraditional applications of seq2seq, like information extraction. We demonstrate the approach on Nested Named Entity Recognition, achieving near state-of-the-art accuracy with an order of magnitude increase in decoding speed.
In many machine learning scenarios, supervision by gold labels is not available and consequently neural models cannot be trained directly by maximum likelihood estimation (MLE). In a weak supervision scenario, metric-augmented objectives can be employed to assign feedback to model outputs, which can be used to extract a supervision signal for training. We present several objectives for two separate weakly supervised tasks, machine translation and semantic parsing. We show that objectives should actively discourage negative outputs in addition to promoting a surrogate gold structure. This notion of bipolarity is naturally present in ramp loss objectives, which we adapt to neural models. We show that bipolar ramp loss objectives outperform other non-bipolar ramp loss objectives and minimum risk training (MRT) on both weakly supervised tasks, as well as on a supervised machine translation task. Additionally, we introduce a novel token-level ramp loss objective, which is able to outperform even the best sequence-level ramp loss on both weakly supervised tasks.
Label smoothing has been shown to be an effective regularization strategy in classification, that prevents overfitting and helps in label de-noising. However, extending such methods directly to seq2seq settings, such as Machine Translation, is challenging: the large target output space of such problems makes it intractable to apply label smoothing over all possible outputs. Most existing approaches for seq2seq settings either do token level smoothing, or smooth over sequences generated by randomly substituting tokens in the target sequence. Unlike these works, in this paper, we propose a technique that smooths over emph{well formed} relevant sequences that not only have sufficient n-gram overlap with the target sequence, but are also emph{semantically similar}. Our method shows a consistent and significant improvement over the state-of-the-art techniques on different datasets.
We present an attention-based sequence-to-sequence neural network which can directly translate speech from one language into speech in another language, without relying on an intermediate text representation. The network is trained end-to-end, learning to map speech spectrograms into target spectrograms in another language, corresponding to the translated content (in a different canonical voice). We further demonstrate the ability to synthesize translated speech using the voice of the source speaker. We conduct experiments on two Spanish-to-English speech translation datasets, and find that the proposed model slightly underperforms a baseline cascade of a direct speech-to-text translation model and a text-to-speech synthesis model, demonstrating the feasibility of the approach on this very challenging task.