Do you want to publish a course? Click here

Radio jet structures at ~100 parsec and larger scales of the $gamma$-ray-emitting narrow-line Seyfert 1 galaxy PMN J0948+0022

398   0   0.0 ( 0 )
 Added by Akihiro Doi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The narrow-line Seyfert 1 (NLS1) galaxy PMN J0948+0022 is an archetype of gamma-ray-emitting NLS1s in active galactic nuclei (AGNs). In this study, we investigate its radio structures using archival data obtained using the Karl G.~Jansky very large array (VLA) and the very long baseline array (VLBA). The new VLA images reveal an outermost radio emission separated by 9.1 arcsec. Its resolved structure and steep spectrum suggest a terminal shock in a radio lobe energized by the jet from the PMN J0948+0022 nucleus. This large-scale radio component is found at almost the same position angle as that of the pc-scale jet, indicating a stable jet direction up to ~1 Mpc. Its apparent one-sidedness implies a moderate advancing speed ($beta>0.27$). The kinematic age of 1 x 10^7 year of the jet activity is consistent with the expected NLS1 phase of ~10^7 year in the AGN lifetime. The VLBA image reveals the jet structure at distances ranging from r=0.82 milliarcsec to 3.5 milliarcsec, corresponding to approximately 100 pc, where superluminal motions were found. The jet width profile ($propto r^{1.12}$) and flux-density profile ($propto r^{-1.44}$) depending on the distance $r$ along the jet suggest that the jet kinetic energy is converted into internal energy in this region. The jet is causally connected in a nearly conical streamline, which is supported by ambient pressure at 100 pc scales in the host galaxy of PMN J0948+0022.



rate research

Read More

We report on radio-to-gamma-ray observations during 2011 May-September of PMN J0948+0022, the first narrow-line Seyfert 1 (NLSy1) galaxy detected in gamma-rays by Fermi-LAT. Strong variability was observed in gamma-rays, with two flaring periods peaking on 2011 June 20 and July 28. The variability observed in optical and near-infrared seems to have no counterpart in gamma-rays. This different behaviour could be related to a bending and inhomogeneous jet or a turbulent extreme multi-cell scenario. The radio spectra showed a variability pattern typical of relativistic jets. The XMM spectrum shows that the emission from the jet dominates above 2 keV, while a soft X-ray excess is evident in the low-energy part of the X-ray spectrum. Models where the soft emission is partly produced by blurred reflection or Comptonisation of the thermal disc emission provide good fits to the data. The X-ray spectral slope is similar to that found in radio-quiet NLSy1, suggesting that a standard accretion disc is present, as expected from the high accretion rate. Except for the soft X-ray excess, unusual in jet-dominated AGNs, PMN J0948+0022 shows all characteristics of the blazar class.
We report on a multiwavelength campaign on the radio-loud Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948+0022 (z=0.5846) performed in 2010 July-September and triggered by a high-energy gamma-ray outburst observed by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. The peak flux in the 0.1-100 GeV energy band exceeded, for the first time in this type of source, the value of 10^-6 ph cm^-2 s^-1, corresponding to an observed luminosity of 10^48 erg s^-1. Although the source was too close to the Sun position to organize a densely sampled follow-up, it was possible to gather some multiwavelength data that confirmed the state of high activity across the sampled electromagnetic spectrum. The comparison of the spectral energy distribution of the NLS1 PMN J0948+0022 with that of a typical blazar - like 3C 273 - shows that the power emitted at gamma rays is extreme.
We present a multi-frequency study of PKS J1222$+$0413 (4C$+$04.42), currently the highest redshift $gamma$-ray emitting narrow-line Seyfert 1 ($gamma$-NLS1). We assemble a broad spectral energy distribution (SED) including previously unpublished datasets: X-ray data obtained with the NuSTAR and Neil Gehrels Swift observatories; near-infrared, optical and UV spectroscopy obtained with VLT X-shooter; and multiband radio data from the Effelsberg telescope. These new observations are supplemented by archival data from the literature. We apply physical models to the broadband SED, parameterising the accretion flow and jet emission to investigate the disc-jet connection. PKS J1222$+$0413 has a much greater black hole mass than most other NLS1s, $M_mathrm{BH}approx2times10^{8}$ M$_odot$, similar to those found in flat spectrum radio quasars (FSRQs). Therefore this source provides insight into how the jets of $gamma$-NLS1s relate to those of FSRQs.
The detection of several radio-loud narrow-line Seyfert 1 (NLS1) galaxies by the Fermi Gamma-Ray Space Telescope hints at the existence of a rare, new class of gamma-ray emitting active galactic nuclei with low black hole masses. Like flat spectrum radio quasars (FSRQs), their gamma-ray emission is thought to be produced via the external Compton mechanism whereby relativistic jet electrons upscatter a photon field external to the jet, e.g. from the accretion disc, broad line region (BLR) and dusty torus, to higher energies. Here we study the origin of the gamma-ray emission in the lowest-redshift candidate among the currently-known gamma-ray emitting NLS1s, 1H 0323+342, and take a new approach. We observationally constrain the external photon field using quasi-simultaneous near-IR, optical and X-ray spectroscopy. Applying a one-zone leptonic jet model, we simulate the range of jet parameters for which this photon field, when Compton scattered to higher energies, can explain the gamma-ray emission. We find that the site of the gamma-ray emission lies well within the BLR and that the seed photons mainly originate from the accretion disc. The jet power that we determine, $1.0 times 10^{45}$ erg s$^{-1}$, is approximately half the accretion disc luminosity. We show that this object is not simply a low-mass FSRQ, its jet is intrinsically less powerful than predicted by scaling a typical FSRQ jet by black hole mass and accretion rate. That gamma-ray emitting NLS1s appear to host underpowered jets may go some way to explaining why so few have been detected to date.
Following the recent discovery of gamma rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z=0.5846), we started a multiwavelength campaign from radio to gamma rays, which was carried out between the end of March and the beginning of July 2009. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to gamma-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the gamma-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day-scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا