Unconventional thermal metallic state of charge-neutral fermions in an insulator


Abstract in English

Quantum oscillations (QOs) in transport and thermodynamic parameters at high magnetic fields are an unambiguous signature of the Fermi surface, the defining characteristic of a metal. Therefore, recent observations of QOs in insulating SmB$_6$ and YbB$_{12}$, in particular the QOs of the resistivity $rho_{xx}$ in YbB$_{12}$, have been a big surprise, pointing to the formation of a novel state of quantum matter. Despite the large charge gap inferred from the insulating behaviour of $rho_{xx}$, these compounds seemingly host a Fermi surface at high magnetic fields. However, the nature of the ground state in zero field has been little explored. Here we report the use of low-temperature heat-transport measurements to discover gapless, itinerant, charge-neutral excitations in the ground state of YbB$_{12}$. At zero field, despite $rho_{xx}$ being far larger than that of conventional metals, a sizable linear temperature dependent term in the thermal conductivity is clearly resolved in the zero-temperature limit ($kappa_{xx}/T(Trightarrow0)=kappa_{xx}^0/T eq0$). Such a residual $kappa_{xx}^0/T$ term at zero field, which is absent in SmB$_6$, leads to a spectacular violation of the Wiedemann-Franz law: the Lorenz ratio $L=kappa_{xx}rho_{xx}/T$ is $10^{4}$-$10^{5}$ times larger than that expected in conventional metals. These data indicate that YbB$_{12}$ is a charge insulator but a thermal metal, suggesting the presence of itinerant neutral fermions. Remarkably, more insulating crystals with larger activation energies exhibit a larger amplitude of the resistive QOs as well as a larger $kappa_{xx}^0/T$, in stark contrast to conventional metals. Moreover, we find that these fermions couple to magnetic field, despite their charge neutrality. Our findings expose novel gapless and highly itinerant, charge-neutral quasiparticles in this unconventional quantum state.

Download