Do you want to publish a course? Click here

Transient trapping into metastable states in systems with competing orders

168   0   0.0 ( 0 )
 Added by Zhiyuan Sun
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quench dynamics of a system involving two competing orders is investigated using a Ginzburg-Landau theory with relaxational dynamics. We consider the scenario where a pump rapidly heats the system to a high temperature, after which the system cools down to its equilibrium temperature. We study the evolution of the order parameter amplitude and fluctuations in the resulting time dependent free energy landscape. Exponentially growing thermal fluctuations dominate the dynamics. The system typically evolves into the phase associated with the faster-relaxing order parameter, even if it is not the global free energy minimum. This theory offers a natural explanation for the widespread experimental observation that metastable states may be induced by laser induced collapse of a dominant equilibrium order parameter.



rate research

Read More

Flat band moire superlattices have recently emerged as unique platforms for investigating the interplay between strong electronic correlations, nontrivial band topology, and multiple isospin flavor symmetries. Twisted monolayer-bilayer graphene (tMBG) is an especially rich system owing to its low crystal symmetry and the tunability of its bandwidth and topology with an external electric field. Here, we find that orbital magnetism is abundant within the correlated phase diagram of tMBG, giving rise to the anomalous Hall effect (AHE) in correlated metallic states nearby most odd integer fillings of the flat conduction band, as well as correlated Chern insulator states stabilized in an external magnetic field. The behavior of the states at zero field appears to be inconsistent with simple spin and valley polarization for the specific range of twist angles we investigate, and instead may plausibly result from an intervalley coherent (IVC) state with an order parameter that breaks time reversal symmetry. The application of a magnetic field further tunes the competition between correlated states, in some cases driving first-order topological phase transitions. Our results underscore the rich interplay between closely competing correlated ground states in tMBG, with possible implications for probing exotic IVC ordering.
The competition between kinetic energy and Coulomb interactions in electronic systems can lead to complex many-body ground states with competing superconducting, charge density wave, and magnetic orders. Here we study the low temperature phases of a strongly interacting zinc-oxide-based high mobility two dimensional electron system that displays a tunable metal-insulator transition. Through a comprehensive analysis of the dependence of electronic transport on temperature, carrier density, in-plane and perpendicular magnetic fields, and voltage bias, we provide evidence for the existence of competing correlated metallic and insulating states with varying degrees of spin polarization. Our system features an unprecedented level of agreement with the state-of-the-art Quantum Monte Carlo phase diagram of the ideal jellium model, including a Wigner crystallization transition at a value of the interaction parameter $r_ssim 30$ and the absence of a pure Stoner transition. In-plane field dependence of transport reveals a new low temperature state with partial spin polarization separating the spin unpolarized metal and the Wigner crystal, which we examine against possible theoretical scenarios such as an anti-ferromagnetic crystal, Coulomb induced micro-emulsions, and disorder driven puddle formation.
Synthesis of new materials that can host magnetic skyrmions and their thorough experimental and theoretical characterization are essential for future technological applications. The $beta$-Mn-type compound FePtMo$_3$N is one such novel material that belongs to the chiral space group $P4_132$, where the antisymmetric Dzyaloshinkii-Moriya interaction is allowed due to the absence of inversion symmetry. We report the results of small-angle neutron scattering (SANS) measurements of FePtMo$_3$N and demonstrate that its magnetic ground state is a long-period spin helix with a Curie temperature of 222~K. The magnetic field-induced redistribution of the SANS intensity showed that the helical structure transforms to a lattice of skyrmions at $sim$13~mT at temperatures just below $T_{text C}$. Our key observation is that the skyrmion state in FePtMo$_3$N is robust against field cooling down to the lowest temperatures. Moreover, once the metastable state is prepared by field cooling, the skyrmion lattice exists even in zero field. Furthermore, we show that the skyrmion size in FePtMo$_3$N exhibits high sensitivity to the sample temperature and can be continuously tuned between 120 and 210~nm. This offers new prospects in the control of topological properties of chiral magnets.
We study the motion of an interface separating two regions with different electronic orders following a short duration pump that drives the system out of equilibrium. Using a generalized Ginzburg-Landau approach and assuming that the main effect of the nonequilibrium drive is to transiently heat the system we address the question of the direction of interface motion; in other words, which ordered region expands and which contracts after the pump. Our analysis includes the effects of differences in free energy landscape and in order parameter dynamics and identifies circumstances in which the drive may act to increase the volume associated with the subdominant order, for example when the subdominant order has a second order free energy landscape while the dominant order has a first order one.
The interplay of Coulomb and electron-phonon interactions with thermal and quantum fluctuations facilitates rich phase diagrams in two-dimensional electron systems. Layered transition metal dichalcogenides hosting charge, excitonic, spin and superconducting order form an epitomic material class in this respect. Theoretical studies of materials like NbS$_2$ have focused on the electron-phonon coupling whereas the Coulomb interaction, particularly strong in the monolayer limit, remained essentially untouched. Here, we analyze the interplay of short- and long-range Coulomb as well as electron-phonon interactions in NbS$_2$ monolayers. The combination of these interactions causes electronic correlations that are fundamentally different to what would be expected from the interaction terms separately. The fully interacting electronic spectral function resembles the non-interacting band structure but with appreciable broadening. An unexpected coexistence of strong charge and spin fluctuations puts NbS$_2$ close to spin and charge order, suggesting monolayer NbS$_2$ as a platform for atomic scale engineering of electronic quantum phases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا