Do you want to publish a course? Click here

Towards Content Transfer through Grounded Text Generation

118   0   0.0 ( 0 )
 Added by Shrimai Prabhumoye
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Recent work in neural generation has attracted significant interest in controlling the form of text, such as style, persona, and politeness. However, there has been less work on controlling neural text generation for content. This paper introduces the notion of Content Transfer for long-form text generation, where the task is to generate a next sentence in a document that both fits its context and is grounded in a content-rich external textual source such as a news story. Our experiments on Wikipedia data show significant improvements against competitive baselines. As another contribution of this paper, we release a benchmark dataset of 640k Wikipedia referenced sentences paired with the source articles to encourage exploration of this new task.



rate research

Read More

122 - Yizhe Zhang , Siqi Sun , Xiang Gao 2021
Recent advances in large-scale pre-training such as GPT-3 allow seemingly high quality text to be generated from a given prompt. However, such generation systems often suffer from problems of hallucinated facts, and are not inherently designed to incorporate useful external information. Grounded generation models appear to offer remedies, but their training typically relies on rarely-available parallel data where corresponding information-relevant documents are provided for context. We propose a framework that alleviates this data constraint by jointly training a grounded generator and document retriever on the language model signal. The model learns to reward retrieval of the documents with the highest utility in generation, and attentively combines them using a Mixture-of-Experts (MoE) ensemble to generate follow-on text. We demonstrate that both generator and retriever can take advantage of this joint training and work synergistically to produce more informative and relevant text in both prose and dialogue generation.
Generic text embeddings are successfully used in a variety of tasks. However, they are often learnt by capturing the co-occurrence structure from pure text corpora, resulting in limitations of their ability to generalize. In this paper, we explore models that incorporate visual information into the text representation. Based on comprehensive ablation studies, we propose a conceptually simple, yet well performing architecture. It outperforms previous multimodal approaches on a set of well established benchmarks. We also improve the state-of-the-art results for image-related text datasets, using orders of magnitude less data.
In this work, we address the problem of modifying textual attributes of sentences. Given an input sentence and a set of attribute labels, we attempt to generate sentences that are compatible with the conditioning information. To ensure that the model generates content compatible sentences, we introduce a reconstruction loss which interpolates between auto-encoding and back-translation loss components. We propose an adversarial loss to enforce generated samples to be attribute compatible and realistic. Through quantitative, qualitative and human evaluations we demonstrate that our model is capable of generating fluent sentences that better reflect the conditioning information compared to prior methods. We further demonstrate that the model is capable of simultaneously controlling multiple attributes.
379 - Wenhu Chen , Yu Su , Xifeng Yan 2020
Data-to-text generation has recently attracted substantial interests due to its wide applications. Existing methods have shown impressive performance on an array of tasks. However, they rely on a significant amount of labeled data for each task, which is costly to acquire and thus limits their application to new tasks and domains. In this paper, we propose to leverage pre-training and transfer learning to address this issue. We propose a knowledge-grounded pre-training (KGPT), which consists of two parts, 1) a general knowledge-grounded generation model to generate knowledge-enriched text. 2) a pre-training paradigm on a massive knowledge-grounded text corpus crawled from the web. The pre-trained model can be fine-tuned on various data-to-text generation tasks to generate task-specific text. We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness. Under the fully-supervised setting, our model can achieve remarkable gains over the known baselines. Under zero-shot setting, our model without seeing any examples achieves over 30 ROUGE-L on WebNLG while all other baselines fail. Under the few-shot setting, our model only needs about one-fifteenth as many labeled examples to achieve the same level of performance as baseline models. These experiments consistently prove the strong generalization ability of our proposed framework https://github.com/wenhuchen/KGPT.
162 - Youzhi Tian , Zhiting Hu , Zhou Yu 2018
Text style transfer aims to modify the style of a sentence while keeping its content unchanged. Recent style transfer systems often fail to faithfully preserve the content after changing the style. This paper proposes a structured content preserving model that leverages linguistic information in the structured fine-grained supervisions to better preserve the style-independent content during style transfer. In particular, we achieve the goal by devising rich model objectives based on both the sentences lexical information and a language model that conditions on content. The resulting model therefore is encouraged to retain the semantic meaning of the target sentences. We perform extensive experiments that compare our model to other existing approaches in the tasks of sentiment and political slant transfer. Our model achieves significant improvement in terms of both content preservation and style transfer in automatic and human evaluation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا