Do you want to publish a course? Click here

The Close AGN Reference Survey (CARS): Comparative analysis of the structural properties of star-forming and non-star-forming galaxy bars

62   0   0.0 ( 0 )
 Added by Justus Neumann
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The absence of star formation in the bar region that has been reported for some galaxies can theoretically be explained by shear. However, it is not clear how star-forming (SF) bars fit into this picture and how the dynamical state of the bar is related to other properties of the host galaxy. We used integral-field spectroscopy from VLT/MUSE to investigate how star formation within bars is connected to structural properties of the bar and the host galaxy. We derived spatially resolved H$alpha$ fluxes from MUSE observations from the CARS survey to estimate star formation rates in the bars of 16 nearby ($0.01 < z < 0.06$) disc galaxies with stellar masses between $10^{10} M_odot$ and $10^{11} M_odot$. We further performed a detailed multicomponent photometric decomposition on images derived from the data cubes. We find that bars clearly divide into SF and non-star-forming (non-SF) types, of which eight are SF and eight are non-SF. Whatever the responsible quenching mechanism is, it is a quick process compared to the lifetime of the bar. The star formation of the bar appears to be linked to the flatness of the surface brightness profile in the sense that only the flattest bars $left(n_mathrm{bar} leq 0.4right)$ are actively SF $left(mathrm{SFR_{b}} > 0.5 M_odot mathrm{yr^{-1}}right)$. Both parameters are uncorrelated with Hubble type. We find that star formation is 1.75 times stronger on the leading than on the trailing edge and is radially decreasing. The conditions to host non-SF bars might be connected to the presence of inner rings. Additionally, from testing an AGN feeding scenario, we report that the star formation rate of the bar is uncorrelated with AGN bolometric luminosity. The results of this study may only apply to type-1 AGN hosts and need to be confirmed for the full population of barred galaxies.

rate research

Read More

Aims: We probe the radiatively-efficient, hot wind feedback mode in two nearby luminous unobscured (type 1) AGN from the Close AGN Reference Survey (CARS), which show intriguing kpc-scale arc-like features of extended [OIII] ionized gas as mapped with VLT-MUSE. We aimed to detect hot gas bubbles that would indicate the existence of powerful, galaxy-scale outflows in our targets, HE 0227-0931 and HE 0351+0240, from deep (200 ks) Chandra observations. Methods: By measuring the spatial and spectral properties of the extended X-ray emission and comparing with the sub kpc-scale IFU data, we are able to constrain feedback scenarios and directly test if the ionized gas is due to a shocked wind. Results: No extended hot gas emission on kpc-scales was detected. Unless the ambient medium density is low ($n_{H}sim~1$ cm$^{-3}$ at 100 pc), the inferred upper limits on the extended X-ray luminosities are well below what is expected from theoretical models at matching AGN luminosities. Conclusions: We conclude that the highly-ionized gas structures on kpc scales are not inflated by a hot outflow in either target, and instead are likely caused by photo-ionization of pre-existing gas streams of different origins. Our non-detections suggest that extended X-ray emission from an AGN-driven wind is not universal, and may lead to conflicts with current theoretical predictions.
We constrain the mass distribution in nearby, star-forming galaxies with the Star Formation Reference Survey (SFRS), a galaxy sample constructed to be representative of all known combinations of star formation rate (SFR), dust temperature, and specific star formation rate (sSFR) that exist in the Local Universe. An innovative two-dimensional bulge/disk decomposition of the 2MASS/$K_{s}$-band images of the SFRS galaxies yields global luminosity and stellar mass functions, along with separate mass functions for their bulges and disks. These accurate mass functions cover the full range from dwarf galaxies to large spirals, and are representative of star-forming galaxies selected based on their infra-red luminosity, unbiased by AGN content and environment. We measure an integrated luminosity density $j$ = 1.72 $pm$ 0.93 $times$ 10$^{9}$ L$_{odot}$ $h^{-1}$ Mpc$^{-3}$ and a total stellar mass density $rho_{M}$ = 4.61 $pm$ 2.40 $times$ 10$^{8}$ M$_{odot}$ $h^{-1}$ Mpc$^{-3}$. While the stellar mass of the emph{average} star-forming galaxy is equally distributed between its sub-components, disks globally dominate the mass density budget by a ratio 4:1 with respect to bulges. In particular, our functions suggest that recent star formation happened primarily in massive systems, where they have yielded a disk stellar mass density larger than that of bulges by more than 1 dex. Our results constitute a reference benchmark for models addressing the assembly of stellar mass on the bulges and disks of local ($z = 0$) star-forming galaxies.
We have used Galaxy Zoo DECaLS (GZD) to study strong and weak bars in disk galaxies. Out of the 314,000 galaxies in GZD, we created a volume-limited sample (0.01 < z < 0.05, Mr < -18.96) which contains 1,867 galaxies with reliable volunteer bar classifications in the ALFALFA footprint. In keeping with previous Galaxy Zoo surveys (such as GZ2), the morphological classifications from GZD agree well with previous morphological surveys. GZD considers galaxies to either have a strong bar (15.5%), a weak bar (28.1%) or no bar (56.4%), based on volunteer classifications on images obtained from the DECaLS survey. This places GZD in a unique position to assess differences between strong and weak bars. We find that the strong bar fraction is typically higher in quiescent galaxies than in star forming galaxies, while the weak bar fraction is similar. Moreover, we have found that strong bars facilitate the quenching process in star forming galaxies, finding higher fibre SFRs, lower gas masses and shorter depletion timescales in these galaxies compared to unbarred galaxies. However, we also found that any differences between strong and weak bars disappear when controlling for bar length. Based on this, we conclude that weak and strong bars are not fundamentally different phenomena. Instead, we propose that there is a continuum of bar types, which varies from weakest to strongest.
[Abridged] We combine extensive spatially-resolved multi-wavelength observations, taken as part of the Close AGN Reference Survey (CARS), for the edge-on disc galaxy HE1353-1917 to characterize the impact of the AGN on its host galaxy via outflows and radiation. Multi-color broad-band photometry is combined with spatially-resolved optical, NIR and sub-mm and radio observations taken with VLT/MUSE, Gemini-N/NIFS, ALMA and the VLA to map the physical properties and kinematics of the multi-phase inter-stellar medium (ISM). We detect a biconical extended narrow-line region (ENLR) ionized by the luminous AGN oriented nearly parallel to the galaxy disc, extending out to at least 25kpc. The extra-planar gas originates from galactic fountains initiated by star formation processes in the disc, rather than an AGN outflow, as shown by the kinematics and the metallicity of the gas. Nevertheless, a fast multi-phase AGN-driven outflow with speeds up to 1000km/s is detected close to the nucleus at 1kpc distance. A radio jet, in connection with the AGN radiation field, is likely responsible for driving the outflow as confirmed by the energetics and the spatial alignment of the jet and multi-phase outflow. Evidence for negative AGN feedback suppressing the star formation rate (SFR) is mild and restricted to the central kpc. But while any SFR suppression must have happened recently, the outflow has the potential to greatly impact the future evolution of the galaxy disc due to its geometrical orientation. Our observations reveal that low-power radio jets can play a major role in driving fast multi-phase galaxy-scale outflows even in radio-quiet AGN. Since the outflow energetics for HE1353-1917 are consistent with literature scaling relations of AGN-driven outflows the contribution of radio jets as the driving mechanisms still needs to be systematically explored.
We report spatially-resolved [CII]$lambda 158$ $mu$m observations of HE 0433-1028, which is the first detection of a nearby luminous AGN (redshift 0.0355) with FIFI-LS onboard the airborne observatory SOFIA. We compare the spatially-resolved star formation tracers [CII], as provided by our SOFIA observations, and H$alpha$ from MUSE optical integral-field spectroscopy. We find that the [CII] emission is mainly matching the extended star formation as traced by the extinction-corrected H$alpha$ line emission but some additional flux is present. While a larger sample is needed to statistically confirm our findings and investigate possible dependencies on AGN luminosity and star formation rate, our study underlines the necessity of collecting a spatially-resolved optical-FIR dataset for nearby AGNs, and shows that it is technically feasible to collect such datasets with FIFI-LS onboard SOFIA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا