Do you want to publish a course? Click here

A Pulsar Wind Nebula Embedded in the Kilonova AT2017gfo Associated with GW 170817/GRB 170817A

139   0   0.0 ( 0 )
 Added by Jia Ren
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first detected gravitational wave GW170817 from a binary neutron star merger is associated with an important optical transient AT 2017gfo, which is a direct observation of kilonova. Recent observations suggest that the remnant compact object of the binary neutron star merger associated with GW170817/GRB 170817A may be a stable long-lived magnetized neutron star. In this situation, there would be a pulsar wind nebula (PWN) embedded inside the dynamic ejecta. The PWN emission may be absorbed by the ejecta or leak out of the system. We study the effect of the PWN emission on the observed light curves and radiation spectra. Different from previous works, the absorption and leakage of the PWN emission are all involved in our model, where the absorption of the PWN emission heats up the ejecta and alters its radiation. It is found that the characteristic emission of the embedded PWN quickly evolves. For the multiband and long-term observations of AT 2017gfo, we find that the dynamic ejecta with a PWN emission can fit the observational data very well, especially for the light curves at $tsim 5$ days and those in the late phase. In addition, our model can naturally generate the thermal to nonthermal spectrum evolution of AT 2017gfo. Our fitting result suggests that a PWN is embedded in the AT 2017gfo.



rate research

Read More

The short gamma-ray burst (GRB) 170817A was the first GRB associated with a gravitational-wave event. Due to the exceptionally low luminosity of the prompt $gamma$-ray and the afterglow emission, the origin of both radiation components is highly debated. The most discussed models for the burst and the afterglow include a regular GRB jet seen off-axis and the emission from the cocoon encompassing a choked jet. Here, we report low radio-frequency observations at 610 and 1390~MHz obtained with the Giant Metrewave Radio Telescope (GMRT). Our observations span a range of $sim7$ to $sim152$ days after the burst. The afterglow started to emerge at these low frequencies about 60~days after the burst. The $1390$~MHz light curve barely evolved between 60 and 150 days, but its evolution is also marginally consistent with a $F_ upropto t^{0.8}$ rise seen in higher frequencies. We model the radio data and archival X-ray, optical and high-frequency radio data with models of top-hat and Gaussian structured GRB jets. We performed a Markov Chain Monte Carlo analysis of the structured-jet parameter space. Though highly degenerate, useful bounds on the posterior probability distributions can be obtained. Our bounds of the viewing angle are consistent with that inferred from the gravitational wave signal. We estimate the energy budget in prompt emission to be an order of magnitude lower than that in the afterglow blast-wave.
Motivating by the discovery of association between GW 170817 and sGRB 170817A, we present a comprehensive analysis for sGRBs observed with Fermi/GBM in 9 operation years and study the properties of sGRB 170817A -like events. We derive a catalog of 275 typical sGRBs and 48 sGRB 170817A-like weak events from the GBM data of 2217 GRBs. We visibly identify two patterns of their light curve, single episode (Pattern I, 61% of the SGRBs) and multiple episodes (Pattern II, 39% of the SGRBs). Their duration distribution shows a tentative bimodal feature. Their spectra can be fitted with a cutoff power-law model, except for 4 sGRBs, and the spectral indices normally distribute at $Gamma=0.69pm 0.40$. Their $E_p$ values show a tentative bimodal distribution with peaks at 145 keV and 500 keV. No correlation among $T_{90}$, $E_p$, and $Gamma$ is found. GRB 170817A is a soft, weak sGRB with $ E_{p}=124pm 106$ keV, $L_{rm iso}=(5.67pm4.65)times10^{46}rm ~erg~s^{-1}$, and $E_{rm iso}=(3.23pm2.65)times10^{46}rm ~erg$. It follows the $E_{rm iso}-E_{rm p}$ relation of typical short GRBs. Its lightcurve is of Pattern II. Two lightcurve patterns, together with the potential two components in the $E_{rm p}$ and $T_{90}$ distributions, we suspect that the current sample may include two distinct types of sGRBs from different progenitors. sGRB 170817A-like events may be from NS-NS mergers and those sGRBs with a Pattern I lightcurve may be from another distinct type of compact binary.
155 - E. Berger , W. Fong , 2013
We present ground-based optical and Hubble Space Telescope optical and near-IR observations of the short-hard GRB130603B at z=0.356, which demonstrate the presence of excess near-IR emission matching the expected brightness and color of an r-process powered transient (a kilonova). The early afterglow fades rapidly with alpha<-2.6 at t~8-32 hr post-burst and has a spectral index of beta=-1.5 (F_nu t^alpha*nu^beta), leading to an expected near-IR brightness at the time of the first HST observation of m(F160W)>29.3 AB mag. Instead, the detected source has m(F160W)=25.8+/-0.2 AB mag, corresponding to a rest-frame absolute magnitude of M(J)=-15.2 mag. The upper limit in the HST optical observations is m(F606W)>27.7 AB mag (3-sigma), indicating an unusually red color of V-H>1.9 mag. Comparing the observed near-IR luminosity to theoretical models of kilonovae produced by ejecta from the merger of an NS-NS or NS-BH binary, we infer an ejecta mass of M_ej~0.03-0.08 Msun for v_ej=0.1-0.3c. The inferred mass matches the expectations from numerical merger simulations. The presence of a kilonova provides the strongest evidence to date that short GRBs are produced by compact object mergers, and provides initial insight on the ejected mass and the primary role that compact object merger may play in the r-process. Equally important, it demonstrates that gravitational wave sources detected by Advanced LIGO/Virgo will be accompanied by optical/near-IR counterparts with unusually red colors, detectable by existing and upcoming large wide-field facilities (e.g., Pan-STARRS, DECam, Subaru, LSST).
We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures - two $approx 0.2 d_{250}$ pc long lateral tails and a segmented axial tail of $approx 0.05 d_{250}$ pc length, where $d_{250}=d/(250 {rm pc})$. The photon indices of the power law spectra of the lateral tails, $Gamma approx 1$, are significantly harder than those of the pulsar ($Gamma approx 1.5$) and the axial tail ($Gamma approx 1.6$). There is no significant diffuse X-ray emission between the lateral tails -- the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indication of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.
71 - Sangin Kim 2020
In this work, we study the X-ray bow-shock nebula powered by the mature pulsar PSR B1929+10 using data from XMM-Newton, with an effective exposure of $sim$ 300 ks, offering the deepest investigation of this system thus far. We found the X-ray axial outflow extends as long as $sim$ 8 arc minute behind the proper motion direction, which is a factor of two longer than the result reported in the previous study. Furthermore, we found evidence of two faint lateral outflows extending laterally with respect to the proper motion. We also found indications of spectral hardening along the axial outflow, suggesting that certain acceleration processes might occur along this feature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا