Do you want to publish a course? Click here

AstroSat view of MAXI J1535-571: broadband spectro-temporal features

76   0   0.0 ( 0 )
 Added by Sreehari H
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of Target of Opportunity (ToO) observations made with AstroSat of the newly discovered black hole binary MAXI J1535-571. We detect prominent C-type Quasi-periodic Oscillations (QPOs) of frequencies varying from 1.85 Hz to 2.88 Hz, along with distinct harmonics in all the AstroSat observations. We note that while the fundamental QPO is seen in the 3 - 50 keV energy band, the harmonic is not significant above ~ 35 keV. The AstroSat observations were made in the hard intermediate state, as seen from state transitions observed by MAXI and Swift. We attempt spectral modelling of the broadband data (0.7-80 keV) provided by AstroSat using phenomenological and physical models. The spectral modelling using nthComp gives a photon index in the range between 2.18-2.37 and electron temperature ranging from 21 to 63 keV. The seed photon temperature is within 0.19 to 0.29 keV. The high flux in 0.3 - 80 keV band corresponds to a luminosity varying from 0.7 to 1.07 L_Edd assuming the source to be at a distance of 8 kpc and hosting a black hole with a mass of 6 M$_{odot}$. The physical model based on the two-component accretion flow gives disc accretion rates as high as ~ 1 $dot{m}_{Edd}$ and halo rate ~ 0.2 $dot{m}_{Edd}$ respectively. The near Eddington accretion rate seems to be the main reason for the unprecedented high flux observed from this source. The two-component spectral fitting of AstroSat data also provides an estimate of a black hole mass between 5.14 to 7.83 M$_{odot}$.



rate research

Read More

We report the results of the analysis of an AstroSat observation of the Black Hole candidate MAXI J1535-571 during its Hard Intermediate state. We studied the evolution of the spectral and timing parameters of the source during the observation. The observation covered a period of $sim$5 days and consisted of 66 continuous segments, corresponding to individual spacecraft orbits. Each segment was analysed independently. The source count rate increased roughly linearly by $sim$30 %. We modelled the spectra as a combination of radiation from a thermal disk component and a power-law. The timing analysis revealed the presence of strong Quasi Periodic Oscillations with centroid frequency $ u_{rm{QPO}}$ fluctuating in the range 1.7-3.0 Hz. We found a tight correlation between the QPO centroid frequency $ u_{rm{QPO}}$ and the power-law spectral index $Gamma$, while $ u_{rm{QPO}}$ appeared not to be correlated with the linearly-increasing flux itself. We discuss the implications of these results on physical models of accretion.
We report the results from textit{AstroSat} observations of the transient Galactic black hole X-ray binary MAXI J1535-571 during its hard-intermediate state of the 2017 outburst. We systematically study the individual and joint spectra from two simultaneously observing textit{AstroSat} X-ray instruments, and probe and measure a number of parameter values of accretion disc, corona and reflection from the disc in the system using models with generally increasing complexities. Using our broadband ($1.3-70$ keV) X-ray spectrum, we clearly show that a soft X-ray instrument, which works below $sim 10-12$ keV, alone cannot correctly characterize the Comptonizing component from the corona, thus highlighting the importance of broadband spectral analysis. By fitting the reflection spectrum with the latest version of the textsc{relxill} family of relativistic reflection models, we constrain the black holes dimensionless spin parameter to be $0.67^{+0.16}_{-0.04}$. We also jointly use the reflection spectral component (textsc{relxill}) and a general relativistic thin disc component (texttt{Kerrbb}), and estimate the black holes mass and distance to be $10.39_{-0.62}^{+0.61} M_{odot}$ and $5.4_{-1.1}^{+1.8}$ kpc respectively.
Galactic transient black hole candidate (BHC) MAXI J1535-571 was discovered on 2017 September 02 simultaneously by {it MAXI}/GSC and {it Swift}/BAT instruments. It has also been observed by Indias first multi-wavelength astronomy-mission satellite {it AstroSat}, during the rising phase of its 2017-18 outburst. We make both the spectral and the temporal analysis of the source during 2017 September 12-17 using data of {it AstroSat}s Large Area X-ray Proportional Counter (LAXPC) in the energy range of $3-40$~keV to infer the accretion flow properties of the source. Spectral analysis is done with the physical two-component advective flow (TCAF) solution-based {it fits} file. From the nature of the variation of the TCAF model fitted physical flow parameters, we conclude and confirm that the source was in the intermediate spectral state during our analysis period. We observe sharp type-C quasi-periodic oscillations (QPOs) in the frequency range of $sim 1.75-2.81$~Hz. For a better understanding of the nature and evolution of these type-C QPOs, a dynamic study of the power density spectra is done. We also investigate the origin of these QPOs from the shock oscillation model. We find that non-satisfaction of Rankine-Hugoniot conditions for non-dissipative shocks and not their resonance oscillations is the cause of the observed type-C QPOs.
We present a broadband radio study of the transient jets ejected from the black hole candidate X-ray binary MAXI J1535-571, which underwent a prolonged outburst beginning on 2 September 2017. We monitored MAXI J1535-571 with the Murchison Widefield Array (MWA) at frequencies from 119 to 186 MHz over six epochs from 20 September to 14 October 2017. The source was quasi-simultaneously observed over the frequency range 0.84-19 GHz by UTMOST (the upgraded Molonglo Observatory Synthesis Telescope), the Australian Square Kilometre Array Pathfinder, the Australia Telescope Compact Array (ATCA), and the Australian Long Baseline Array (LBA). Using the LBA observations from 23 September 2017, we measured the source size to be $34pm1$ mas. During the brightest radio flare on 21 September 2017, the source was detected down to 119 MHz by the MWA, and the radio spectrum indicates a turnover between 250 and 500 MHz, which is most likely due to synchrotron self-absorption (SSA). By fitting the radio spectrum with a SSA model and using the LBA size measurement, we determined various physical parameters of the jet knot (identified in ATCA data), including the jet opening angle (= $4.5pm1.2^{circ}$) and the magnetic field strength (= $104^{+80}_{-78}$ mG). Our fitted magnetic field strength agrees reasonably well with that inferred from the standard equipartition approach, suggesting the jet knot to be close to equipartition. Our study highlights the capabilities of the Australian suite of radio telescopes to jointly probe radio jets in black hole X-ray binaries (BH-XRBs) via simultaneous observations over a broad frequency range, and with differing angular resolutions. This suite allows us to determine the physical properties of XRB jets. Finally, our study emphasizes the potential contributions that can be made by the low-frequency part of the Square Kilometre Array (SKA-Low) in the study of BH-XRBs.
We present the first results of extragalactic black hole X-ray binaries LMC X-1 and LMC X-3 using all the archival and legacy observations by AstroSat during the period of $2016-2020$. Broadband energy spectra ($0.5-20$ keV) of both sources obtained from the SXT and LAXPC on-board AstroSat are characterized by strong thermal disc blackbody component ($kT_{in}sim1$keV, $f_{disc}>79%$) along with a steep power-law ($Gammasim2.4-3.2$). Bolometric luminosity of LMC X-1 varies from $7-10%$ of Eddington luminosity ($L_{Edd}$) and for LMC X-3 is in the range $7-13%$ of $L_{Edd}$. We study the long-term variation of the light curve using MAXI data and find the fractional variance to be $sim25%$ for LMC X-1 and $sim53%$ for LMC X-3. We examine the temporal properties of both sources and obtain fractional rms variability of PDS in the frequency range $0.002-10$ Hz to be $sim9%-17%$ for LMC X-1, and $sim7%-11%$ for LMC X-3. The `spectro-temporal properties indicate both sources are in thermally dominated soft state. By modelling the spectra with relativistic accretion disc model, we determine the mass of LMC X-1 and LMC X-3 in the range $7.64-10.00$ $M_{odot}$ and $5.35-6.22$ $M_{odot}$ respectively. We also constrain the spin of LMC X-1 to be in the range $0.82-0.92$ and that of LMC X-3 in $0.22-0.41$ with 90% confidence. We discuss the implications of our results in the context of accretion dynamics around the black hole binaries and compare it with the previous findings of both sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا