Do you want to publish a course? Click here

Photon waiting time distributions: a keyhole into dissipative quantum chaos

280   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Open quantum systems can exhibit complex states, which classification and quantification is still not well resolved. The Kerr-nonlinear cavity, periodically modulated in time by coherent pumping of the intra-cavity photonic mode, is one of the examples. Unraveling the corresponding Markovian master equation into an ensemble of quantum trajectories and employing the recently proposed calculation of quantum Lyapunov exponents [I.I. Yusipov {it et al.}, Chaos {bf 29}, 063130 (2019)], we identify `chaotic and `regular regimes there. In particular, we show that chaotic regimes manifest an intermediate power-law asymptotics in the distribution of photon waiting times. This distribution can be retrieved by monitoring photon emission with a single-photon detector, so that chaotic and regular states can be discriminated without disturbing the intra-cavity dynamics.



rate research

Read More

84 - Chushun Tian , Kun Yang , 2016
A profound quest of statistical mechanics is the origin of irreversibility - the arrow of time. New stimulants have been provided, thanks to unprecedented degree of control reached in experiments with isolated quantum systems and rapid theoretical developments of manybody localization in disordered interacting systems. The proposal of (many-body) eigenstate thermalization (ET) for these systems reinforces the common belief that either interaction or extrinsic randomness is required for thermalization. Here, we unveil a quantum thermalization mechanism challenging this belief. We find that, provided one-body quantum chaos is present, as a pure many-body state evolves the arrow of time can emerge, even without interaction or randomness. In times much larger than the Ehrenfest time that signals the breakdown of quantum-classical correspondence, quantum chaotic motion leads to thermal [Fermi-Dirac (FD) or Bose-Einstein (BE)] distributions and thermodynamics in individual eigenstates. Our findings lay dynamical foundation of statistical mechanics and thermodynamics of isolated quantum systems.
The correspondence principle is a cornerstone in the entire construction of quantum mechanics. This principle has been recently challenged by the observation of an early-time exponential increase of the out-of-time-ordered correlator (OTOC) in classically non-chaotic systems [E.B. Rozenbaum et al., Phys. Rev. Lett. 125, 014101 (2020)], Here we show that the correspondence principle is restored after a proper treatment of the singular points. Furthermore our results show that the OTOC maintains its role as a diagnostic of chaotic dynamics.
We show that the time evolution of an open quantum system, described by a possibly time dependent Liouvillian, can be simulated by a unitary quantum circuit of a size scaling polynomially in the simulation time and the size of the system. An immediate consequence is that dissipative quantum computing is no more powerful than the unitary circuit model. Our result can be seen as a dissipative Church-Turing theorem, since it implies that under natural assumptions, such as weak coupling to an environment, the dynamics of an open quantum system can be simulated efficiently on a quantum computer. Formally, we introduce a Trotter decomposition for Liouvillian dynamics and give explicit error bounds. This constitutes a practical tool for numerical simulations, e.g., using matrix-product operators. We also demonstrate that most quantum states cannot be prepared efficiently.
In this paper, the purity of quantum states is applied to probe chaotic dissipative dynamics. To achieve this goal, a comparative analysis of regular and chaotic regimes of nonlinear dissipative oscillator (NDO) are performed on the base of excitation number and the purity of oscillatory states. While the chaotic regime is identified in our semiclassical approach by means of strange attractors in Poincare section and with the Lyapunov exponent, the state in the quantum regime is treated via the Wigner function. Specifically, interesting quantum purity effects that accompany the chaotic dynamics are elucidated in this paper for NDO system driven by either: (i) a time-modulated field, or (ii) a sequence of pulses with Gaussian time-dependent envelopes.
149 - Bin Yan , Wissam Chemissany 2020
This article tackles a fundamental long-standing problem in quantum chaos, namely, whether quantum chaotic systems can exhibit sensitivity to initial conditions, in a form that directly generalizes the notion of classical chaos in phase space. We develop a linear response theory for complexity, and demonstrate that the complexity can exhibit exponential sensitivity in response to perturbations of initial conditions for chaotic systems. Two immediate significant results follows: i) the complexity linear response matrix gives rise to a spectrum that fully recovers the Lyapunov exponents in the classical limit, and ii) the linear response of complexity is given by the out-of-time order correlators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا