Do you want to publish a course? Click here

Time-Contrastive Learning Based Deep Bottleneck Features for Text-Dependent Speaker Verification

75   0   0.0 ( 0 )
 Added by Achintya Sarkar
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs)trained to discriminate speakers, pass-phrases and triphone states for improving the performance of text-dependent speaker verification (TD-SV). However, a moderate success has been achieved. A recent study [1] presented a time contrastive learning (TCL) concept to explore the non-stationarity of brain signals for classification of brain states. Speech signals have similar non-stationarity property, and TCL further has the advantage of having no need for labeled data. We therefore present a TCL based BN feature extraction method. The method uniformly partitions each speech utterance in a training dataset into a predefined number of multi-frame segments. Each segment in an utterance corresponds to one class, and class labels are shared across utterances. DNNs are then trained to discriminate all speech frames among the classes to exploit the temporal structure of speech. In addition, we propose a segment-based unsupervised clustering algorithm to re-assign class labels to the segments. TD-SV experiments were conducted on the RedDots challenge database. The TCL-DNNs were trained using speech data of fixed pass-phrases that were excluded from the TD-SV evaluation set, so the learned features can be considered phrase-independent. We compare the performance of the proposed TCL bottleneck (BN) feature with those of short-time cepstral features and BN features extracted from DNNs discriminating speakers, pass-phrases, speaker+pass-phrase, as well as monophones whose labels and boundaries are generated by three different automatic speech recognition (ASR) systems. Experimental results show that the proposed TCL-BN outperforms cepstral features and speaker+pass-phrase discriminant BN features, and its performance is on par with those of ASR derived BN features. Moreover,....



rate research

Read More

176 - Yi Liu , Liang He , Yao Tian 2017
Text-dependent speaker verification is becoming popular in the speaker recognition society. However, the conventional i-vector framework which has been successful for speaker identification and other similar tasks works relatively poorly in this task. Researchers have proposed several new methods to improve performance, but it is still unclear that which model is the best choice, especially when the pass-phrases are prompted during enrollment and test. In this paper, we introduce four modeling methods and compare their performance on the newly published RedDots dataset. To further explore the influence of different frame alignments, Viterbi and forward-backward algorithms are both used in the HMM-based models. Several bottleneck features are also investigated. Our experiments show that, by explicitly modeling the lexical content, the HMM-based modeling achieves good results in the fixed-phrase condition. In the prompted-phrase condition, GMM-HMM and i-vector/HMM are not as successful. In both conditions, the forward-backward algorithm brings more benefits to the i-vector/HMM system. Additionally, we also find that even though bottleneck features perform well for text-independent speaker verification, they do not outperform MFCCs on the most challenging Imposter-Correct trials on RedDots.
Open-set speaker recognition can be regarded as a metric learning problem, which is to maximize inter-class variance and minimize intra-class variance. Supervised metric learning can be categorized into entity-based learning and proxy-based learning. Most of the existing metric learning objectives like Contrastive, Triplet, Prototypical, GE2E, etc all belong to the former division, the performance of which is either highly dependent on sample mining strategy or restricted by insufficient label information in the mini-batch. Proxy-based losses mitigate both shortcomings, however, fine-grained connections among entities are either not or indirectly leveraged. This paper proposes a Masked Proxy (MP) loss which directly incorporates both proxy-based relationships and pair-based relationships. We further propose Multinomial Masked Proxy (MMP) loss to leverage the hardness of speaker pairs. These methods have been applied to evaluate on VoxCeleb test set and reach state-of-the-art Equal Error Rate(EER).
Speaker embeddings become growing popular in the text-independent speaker verification task. In this paper, we propose two improvements during the training stage. The improvements are both based on triplet cause the training stage and the evaluation stage of the baseline x-vector system focus on different aims. Firstly, we introduce triplet loss for optimizing the Euclidean distances between embeddings while minimizing the multi-class cross entropy loss. Secondly, we design an embedding similarity measurement network for controlling the similarity between the two selected embeddings. We further jointly train the two new methods with the original network and achieve state-of-the-art. The multi-task training synergies are shown with a 9% reduction equal error rate (EER) and detected cost function (DCF) on the 2016 NIST Speaker Recognition Evaluation (SRE) Test Set.
In this paper, we focus on improving the performance of the text-dependent speaker verification system in the scenario of limited training data. The speaker verification system deep learning based text-dependent generally needs a large scale text-dependent training data set which could be labor and cost expensive, especially for customized new wake-up words. In recent studies, voice conversion systems that can generate high quality synthesized speech of seen and unseen speakers have been proposed. Inspired by those works, we adopt two different voice conversion methods as well as the very simple re-sampling approach to generate new text-dependent speech samples for data augmentation purposes. Experimental results show that the proposed method significantly improves the Equal Error Rare performance from 6.51% to 4.51% in the scenario of limited training data.
J-vector has been proved to be very effective in text-dependent speaker verification with short-duration speech. However, the current state-of-the-art back-end classifiers, e.g. joint Bayesian model, cannot make full use of such deep features. In this paper, we generalize the standard joint Bayesian approach to model the multi-faceted information in the j-vector explicitly and jointly. In our generalization, the j-vector was modeled as a result derived by a generative Double Joint Bayesian (DoJoBa) model, which contains several kinds of latent variables. With DoJoBa, we are able to explicitly build a model that can combine multiple heterogeneous information from the j-vectors. In verification step, we calculated the likelihood to describe whether the two j-vectors having consistent labels or not. On the public RSR2015 data corpus, the experimental results showed that our approach can achieve 0.02% EER and 0.02% EER for impostor wrong and impostor correct cases respectively.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا