Do you want to publish a course? Click here

Information Content of the Gravitational Field of a Quantum Superposition

134   0   0.0 ( 0 )
 Added by Alessio Belenchia
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

When a massive quantum body is put into a spatial superposition, it is of interest to consider the quantum aspects of the gravitational field sourced by the body. We argue that in order to understand how the body may become entangled with other massive bodies via gravitational interactions, it must be thought of as being entangled with its own Newtonian-like gravitational field. Thus, a Newtonian-like gravitational field must be capable of carrying quantum information. Our analysis supports the view that table-top experiments testing entanglement of systems interacting via gravity do probe the quantum nature of gravity, even if no ``gravitons are emitted during the experiment.



rate research

Read More

What gravitational field is generated by a massive quantum system in a spatial superposition? Despite decades of intensive theoretical and experimental research, we still do not know the answer. On the experimental side, the difficulty lies in the fact that gravity is weak and requires large masses to be detectable. However, it becomes increasingly difficult to generate spatial quantum superpositions for increasingly large masses, in light of the stronger environmental effects on such systems. Clearly, a delicate balance between the need for strong gravitational effects and weak decoherence should be found. We show that such a trade off could be achieved in an optomechanics scenario that allows to determine whether the gravitational field generated by a quantum system in a spatial superposition is in a coherent superposition or not. We estimate the magnitude of the effect and show that it offers perspectives for observability.
We analyse a gedankenexperiment previously considered by Mari et al. that involves quantum superpositions of charged and/or massive bodies (particles) under the control of the observers, Alice and Bob. In the electromagnetic case, we show that the quantization of electromagnetic radiation (which causes decoherence of Alices particle) and vacuum fluctuations of the electromagnetic field (which limits Bobs ability to localize his particle to better than a charge-radius) both are essential for avoiding apparent paradoxes with causality and complementarity. We then analyze the gravitational version of this gedankenexperiment. We correct an error in the analysis of Mari et al. and of Baym and Ozawa, who did not properly account for the conservation of center of mass of an isolated system. We show that the analysis of the gravitational case is in complete parallel with the electromagnetic case provided that gravitational radiation is quantized and that vacuum fluctuations limit the localization of a particle to no better than a Planck length. This provides support for the view that (linearized) gravity should have a quantum field description.
74 - Marco Roncaglia 2017
According to quantum mechanics, the informational content of isolated systems does not change in time. However, subadditivity of entropy seems to describe an excess of information when we look at single parts of a composite systems and their correlations. Moreover, the balance between the entropic contributions coming from the various parts is not conserved under unitary transformations. Reasoning on the basic concept of quantum mechanics, we find that in such a picture an important term has been overlooked: the intrinsic quantum information encoded in the coherence of pure states. To fill this gap we are led to define a quantity, that we call coherent entropy, which is necessary to account for the missing information and for re-establishing its conservation. Interestingly, the coherent entropy is found to be equal to the information conveyed in the future by quantum states. The perspective outlined in this paper may be of some inspiration in several fields, from foundations of quantum mechanics to black-hole physics.
171 - Paul M. Alsing 2014
In this paper we extend the investigation of Adami and Ver Steeg [Class. Quantum Grav. textbf{31}, 075015 (2014)] to treat the process of black hole particle emission effectively as the analogous quantum optical process of parametric down conversion (PDC) with a dynamical (depleted vs. non-depleted) `pump source mode which models the evaporating black hole (BH) energy degree of freedom. We investigate both the short time (non-depleted pump) and long time (depleted pump) regimes of the quantum state and its impact on the Holevo channel capacity for communicating information from the far past to the far future in the presence of Hawking radiation. The new feature introduced in this work is the coupling of the emitted Hawking radiation modes through the common black hole `source pump mode which phenomenologically represents a quantized energy degree of freedom of the gravitational field. This (zero-dimensional) model serves as a simplified arena to explore BH particle production/evaporation and back-action effects under an explicitly unitary evolution which enforces quantized energy/particle conservation. Within our analogous quantum optical model we examine the entanglement between two emitted particle/anti-particle and anti-particle/particle pairs coupled via the black hole (BH) evaporating `pump source. We also analytically and dynamically verify the `Page information time for our model which refers to the conventionally held belief that the information in the BH radiation becomes significant after the black hole has evaporated half its initial energy into the outgoing radiation. Lastly, we investigate the effect of BH particle production/evaporation on two modes in the exterior region of the BH event horizon that are initially maximally entangled, when one mode falls inward and interacts with the black hole, and the other remains forever outside and non-interacting.
106 - Onur Hosten 2021
We show that the atom interferometric coherence revival test suggested in [arXiv:2101.11629 [quant-ph] (2021)] does not test the quantum nature of the gravitational field when the atoms are coupled to a mechanical oscillator prepared in a thermal state. Specifically we clarify that the same coherence revivals take place in a model where the atoms are coupled to a classical oscillator through a classical gravitational field. We further elucidate the quantum mechanical calculation, showing that entanglement is not the source of the revivals. The suggested test is thus only relevant for pure initial quantum states of the oscillator. In this regime, numerical estimates show that it is unfeasible to do a test of the proposed type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا