Do you want to publish a course? Click here

Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems

142   0   0.0 ( 0 )
 Added by Hongwei Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Knowledge graphs capture structured information and relations between a set of entities or items. As such knowledge graphs represent an attractive source of information that could help improve recommender systems. However, existing approaches in this domain rely on manual feature engineering and do not allow for an end-to-end training. Here we propose Knowledge-aware Graph Neural Networks with Label Smoothness regularization (KGNN-LS) to provide better recommendations. Conceptually, our approach computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relationships for a given user. This way we transform the knowledge graph into a user-specific weighted graph and then apply a graph neural network to compute personalized item embeddings. To provide better inductive bias, we rely on label smoothness assumption, which posits that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over the edge weights and we prove that it is equivalent to a label propagation scheme on a graph. We also develop an efficient implementation that shows strong scalability with respect to the knowledge graph size. Experiments on four datasets show that our method outperforms state of the art baselines. KGNN-LS also achieves strong performance in cold-start scenarios where user-item interactions are sparse.



rate research

Read More

Context-aware recommender systems (CARS) have gained increasing attention due to their ability to utilize contextual information. Compared to traditional recommender systems, CARS are, in general, able to generate more accurate recommendations. Latent factors approach accounts for a large proportion of CARS. Recently, a non-linear Gaussian Process (GP) based factorization method was proven to outperform the state-of-the-art methods in CARS. Despite its effectiveness, GP model-based methods can suffer from over-fitting and may not be able to determine the impact of each context automatically. In order to address such shortcomings, we propose a Gaussian Process Latent Variable Model Factorization (GPLVMF) method, where we apply an appropriate prior to the original GP model. Our work is primarily inspired by the Gaussian Process Latent Variable Model (GPLVM), which was a non-linear dimensionality reduction method. As a result, we improve the performance on the real datasets significantly as well as capturing the importance of each context. In addition to the general advantages, our method provides two main contributions regarding recommender system settings: (1) addressing the influence of bias by setting a non-zero mean function, and (2) utilizing real-valued contexts by fixing the latent space with real values.
Latent factor models are the driving forces of the state-of-the-art recommender systems, with an important insight of vectorizing raw input features into dense embeddings. The dimensions of different feature embeddings are often set to a same value empirically, which limits the predictive performance of latent factor models. Existing works have proposed heuristic or reinforcement learning-based methods to search for mixed feature embedding dimensions. For efficiency concern, these methods typically choose embedding dimensions from a restricted set of candidate dimensions. However, this restriction will hurt the flexibility of dimension selection, leading to suboptimal performance of search results. In this paper, we propose Differentiable Neural Input Search (DNIS), a method that searches for mixed feature embedding dimensions in a more flexible space through continuous relaxation and differentiable optimization. The key idea is to introduce a soft selection layer that controls the significance of each embedding dimension, and optimize this layer according to models validation performance. DNIS is model-agnostic and thus can be seamlessly incorporated with existing latent factor models for recommendation. We conduct experiments with various architectures of latent factor models on three public real-world datasets for rating prediction, Click-Through-Rate (CTR) prediction, and top-k item recommendation. The results demonstrate that our method achieves the best predictive performance compared with existing neural input search approaches with fewer embedding parameters and less time cost.
143 - Han Yang , Kaili Ma , James Cheng 2020
The graph Laplacian regularization term is usually used in semi-supervised representation learning to provide graph structure information for a model $f(X)$. However, with the recent popularity of graph neural networks (GNNs), directly encoding graph structure $A$ into a model, i.e., $f(A, X)$, has become the more common approach. While we show that graph Laplacian regularization brings little-to-no benefit to existing GNNs, and propose a simple but non-trivial variant of graph Laplacian regularization, called Propagation-regularization (P-reg), to boost the performance of existing GNN models. We provide formal analyses to show that P-reg not only infuses extra information (that is not captured by the traditional graph Laplacian regularization) into GNNs, but also has the capacity equivalent to an infinite-depth graph convolutional network. We demonstrate that P-reg can effectively boost the performance of existing GNN models on both node-level and graph-level tasks across many different datasets.
129 - Mei Wang , Weizhi Li , Yan Yan 2019
Session-based Recurrent Neural Networks (RNNs) are gaining increasing popularity for recommendation task, due to the high autocorrelation of users behavior on the latest session and the effectiveness of RNN to capture the sequence order information. However, most existing session-based RNN recommender systems still solely focus on the short-term interactions within a single session and completely discard all the other long-term data across different sessions. While traditional Collaborative Filtering (CF) methods have many advanced research works on exploring long-term dependency, which show great value to be explored and exploited in deep learning models. Therefore, in this paper, we propose ASARS, a novel framework that effectively imports the temporal dynamics methodology in CF into session-based RNN system in DL, such that the temporal info can act as scalable weights by a parallel attentional network. Specifically, we first conduct an extensive data analysis to show the distribution and importance of such temporal interactions data both within sessions and across sessions. And then, our ASARS framework promotes two novel models: (1) an inter-session temporal dynamic model that captures the long-term user interaction for RNN recommender system. We integrate the time changes in session RNN and add user preferences as model drifting; and (2) a novel triangle parallel attention network that enhances the original RNN model by incorporating time information. Such triangle parallel network is also specially designed for realizing data argumentation in sequence-to-scalar RNN architecture, and thus it can be trained very efficiently. Our extensive experiments on four real datasets from different domains demonstrate the effectiveness and large improvement of ASARS for personalized recommendation.
The success of recommender systems in modern online platforms is inseparable from the accurate capture of users personal tastes. In everyday life, large amounts of user feedback data are created along with user-item online interactions in a variety of ways, such as browsing, purchasing, and sharing. These multiple types of user feedback provide us with tremendous opportunities to detect individuals fine-grained preferences. Different from most existing recommender systems that rely on a single type of feedback, we advocate incorporating multiple types of user-item interactions for better recommendations. Based on the observation that the underlying spectrum of user preferences is reflected in various types of interactions with items and can be uncovered by latent relational learning in metric space, we propose a unified neural learning framework, named Multi-Relational Memory Network (MRMN). It can not only model fine-grained user-item relations but also enable us to discriminate between feedback types in terms of the strength and diversity of user preferences. Extensive experiments show that the proposed MRMN model outperforms competitive state-of-the-art algorithms in a wide range of scenarios, including e-commerce, local services, and job recommendations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا