Do you want to publish a course? Click here

Tropical diagrams of probability spaces

113   0   0.0 ( 0 )
 Added by Rostislav Matveev
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

After endowing the space of diagrams of probability spaces with an entropy distance, we study its large-scale geometry by identifying the asymptotic cone as a closed convex cone in a Banach space. We call this cone the tropical cone, and its elements tropical diagrams of probability spaces. Given that the tropical cone has a rich structure, while tropical diagrams are rather flexible objects, we expect the theory of tropical diagrams to be useful for information optimization problems in information theory and artificial intelligence. In a companion article, we give a first application to derive a statement about the entropic cone.



rate research

Read More

We define a natural operation of conditioning of tropical diagrams of probability spaces and show that it is Lipschitz continuous with respect to the asymptotic entropy distance.
Arrow contraction applied to a tropical diagram of probability spaces is a modification of the diagram, replacing one of the morphisms by an isomorphims, while preserving other parts of the diagram. It is related to the rate regions introduced by Ahlswede and Korner. In a companion article we use arrow contraction to derive information about the shape of the entropic cone. Arrow expansion is the inverse operation to the arrow contraction.
In this paper we initiate the study of tropical Voronoi diagrams. We start out with investigating bisectors of finitely many points with respect to arbitrary polyhedral norms. For this more general scenario we show that bisectors of three points are homeomorphic to a non-empty open subset of Euclidean space, provided that certain degenerate cases are excluded. Specializing our results to tropical bisectors then yields structural results and algorithms for tropical Voronoi diagrams.
62 - Yuhang Cai , Lek-Heng Lim 2020
Comparing probability distributions is an indispensable and ubiquitous task in machine learning and statistics. The most common way to compare a pair of Borel probability measures is to compute a metric between them, and by far the most widely used notions of metric are the Wasserstein metric and the total variation metric. The next most common way is to compute a divergence between them, and in this case almost every known divergences such as those of Kullback--Leibler, Jensen--Shannon, Renyi, and many more, are special cases of the $f$-divergence. Nevertheless these metrics and divergences may only be computed, in fact, are only defined, when the pair of probability measures are on spaces of the same dimension. How would one quantify, say, a KL-divergence between the uniform distribution on the interval $[-1,1]$ and a Gaussian distribution on $mathbb{R}^3$? We will show that, in a completely natural manner, various common notions of metrics and divergences give rise to a distance between Borel probability measures defined on spaces of different dimensions, e.g., one on $mathbb{R}^m$ and another on $mathbb{R}^n$ where $m, n$ are distinct, so as to give a meaningful answer to the previous question.
This paper is devoted to the study of independent spaces of q-polymatroids. With the aid of an auxiliary q-matroid it is shown that the collection of independent spaces satisfies the same properties as for q-matroids. However, in contrast to q-matroids, the rank value of an independent space does not agree with its dimension. Nonetheless, the rank values of the independent spaces fully determine the q-polymatroid, and this fact can be exploited to derive a cryptomorphism of q-polymatroids. Finally, the notions of minimal spanning spaces, maximally strongly independent spaces, and bases will be elaborated on.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا