Do you want to publish a course? Click here

Extreme magnetic field-boosted superconductivity

76   0   0.0 ( 0 )
 Added by Sheng Ran
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Applied magnetic fields underlie exotic quantum states, such as the fractional quantum Hall effect and Bose-Einstein condensation of spin excitations. Superconductivity, on the other hand, is inherently antagonistic towards magnetic fields. Only in rare cases can these effects be mitigated over limited fields, leading to reentrant superconductivity. Here, we report the unprecedented coexistence of multiple high-field reentrant superconducting phases in the spin-triplet superconductor UTe2. Strikingly, we observe superconductivity in the highest magnetic field range identified for any reentrant superconductor, beyond 65 T. These extreme properties reflect a new kind of exotic superconductivity rooted in magnetic fluctuations and boosted by a quantum dimensional crossover.



rate research

Read More

Magnetic field induced superconductivity is a fascinating quantum phenomenon, whose origin is yet to be fully understood. The recently discovered spin triplet superconductor, UTe2, exhibits two such superconducting phases, with the second one reentering in the magnetic field of 45 T and persisting up to 65 T. More surprisingly, in order to induce this superconducting phase, the magnetic field has to be applied in a special angle range, not along any high symmetry crystalline direction. Here we investigated the evolution of this high-field induced superconducting phase under pressure. Two superconducting phases merges together under pressure, and the zero resistance persists up to 45 T, the field limit of the current study. We also reveal that the high field-induced superconducting phase is completely decoupled from the first order field polarized phase transition, different from previously known example of field induced superconductivity in URhGe, indicating a superconductivity boosted by a different paring mechanism.
We report the high-field superconducting properties of thin, disordered Re films via magneto-transport and tunneling density of states measurements. Films with thicknesses in the range of 9 nm to 3 nm had normal state sheet resistances of $sim$0.2 k$Omega$ to $sim$1 k$Omega$ and corresponding transition temperatures in the range of 6 K to 3 K. Tunneling spectra were consistent with those of a moderate coupling BCS superconductor. Notwithstanding these unremarkable superconducting properties, the films exhibited an extraordinarily high upper critical field. We estimate their zero-temperature $H_{c2}$ to be more than twice the Pauli limit. Indeed, in 6 nm samples the estimated reduced critical field $H_{c2}/T_csim$ 5.6 T/K is among the highest reported for any elemental superconductor. Although the sheet resistances of the films were well below the quantum resistance $R_Q=h/4e^2$, their $H_{c2}$s approached the theoretical upper limit of a strongly disordered superconductor for which $k_Fellsim1$.
A small magnetic field is found to enhance relaxation processes in a superconductor thus stabilizing superconductivity in non-equilibrium conditions. In a normal-metal (N) - insulator - superconductor (S) tunnel junction, applying a field of the order of 100 mu T leads to significantly improved cooling of the N island by quasiparticle (QP) tunneling. These findings are attributed to faster QP relaxation within the S electrodes as a result of enhanced QP drain through regions with locally suppressed energy gap due to magnetic vortices in the S leads at some distance from the junction.
Some of the highest-transition-temperature superconductors across various materials classes exhibit linear-in-temperature `strange metal or `Planckian electrical resistivities in their normal state. It is thus believed by many that this behavior holds the key to unlock the secrets of high-temperature superconductivity. However, these materials typically display complex phase diagrams governed by various competing energy scales, making an unambiguous identification of the physics at play difficult. Here we use electrical resistivity measurements into the micro-Kelvin regime to discover superconductivity condensing out of an extreme strange metal state -- with linear resistivity over 3.5 orders of magnitude in temperature. We propose that the Cooper pairing is mediated by the modes associated with a recently evidenced dynamical charge localization-delocalization transition, a mechanism that may well be pertinent also in other strange metal superconductors.
Studies of the effect of high pressure on superconductivity began in 1925 with the seminal work of Sizoo and Onnes on Sn to 0.03 GPa and have continued up to the present day to pressures in the 200 - 300 GPa range. Such enormous pressures cause profound changes in all condensed matter properties, including superconductivity. In high pressure experiments metallic elements, Tc values have been elevated to temperatures as high as 20 K for Y at 115 GPa and 25 K for Ca at 160 GPa. These pressures are sufficient to turn many insulators into metals and magnetics into superconductors. The changes will be particularly dramatic when the pressure is sufficient to break up one or more atomic shells. Recent results in superconductivity to Mbar pressures wll be discussed which exemplify the progress made in this field over the past 82 years.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا