Vacuum Texture: A New Interpretation of Quantum Mechanics and a New Loophole for Bells Inequality Measurements that preserves Local Realism and Causality


Abstract in English

We introduce a new interpretation of quantum mechanics by examining the Einstein, Podolsky and Rosens (EPR) paradox and Bells inequality experiments under the assumption that the vacuum has an inhomogeneous texture for energy levels below the Heisenberg time-energy uncertainty relation. In this article, selected results from the most reliable Bells inequality experiments will be quantitatively analyzed to show that our interpretation of quantum mechanics creates a new loophole in Bells inequality, and that the past experimental findings do not contradict our new interpretation. Under the vacuum texture interpretation of quantum mechanics in a Bells inequality experiment, the states of the pair of particles created at the source (e.g. during parametric down conversion) is influenced by an inhomogeneous vacuum texture sent from the measurement apparatus. We will also show that the resulting pair of particles are not entangled and that the theory of vacuum texture preserves local realism with complete causality. This article will also suggest an experiment to definitively confirm the existence of vacuum texture.

Download