Omega-bianisotropic metasurface for converting a propagating wave into a surface wave


Abstract in English

Although a rigorous theoretical ground on metasurfaces has been established in the recent years on the basis of the equivalence principle, the majority of metasurfaces for converting a propagating wave into a surface wave are developed in accordance with the so-called generalized Snells law being a simple heuristic rule for performing wave transformations. Recently, for the first time, Tcvetkova et al. [Phys. Rev. B 97, 115447 (2018)] have rigorously studied this problem by means of a reflecting anisotropic metasurface, which is, unfortunately, difficult to realize, and no experimental results are available. In this paper, we propose an alternative practical design of a metasurface-based converter by separating the incident plane wave and the surface wave in different half-spaces. It allows one to preserve the polarization of the incident wave and substitute the anisotropic metasurface by an omega-bianisotropic one. The problem is approached from two sides: By directly solving the corresponding boundary problem and by considering the ``time-reversed scenario when a surface wave is converted into a nonuniform plane wave. We develop a practical three-layer metasurface based on a conventional printed circuit board technology to mimic the omega-bianisotropic response. The metasurface incorporates metallic walls to avoid coupling between adjacent unit cells and accelerate the design procedure. The design is validated with full-wave three-dimensional numerical simulations and demonstrates high conversion efficiency.

Download