Hidden Anisotropy in the Drude Conductivity of Charge Carriers with Dirac-Schrodinger Dynamics


Abstract in English

We show that the conductivity of a two-dimensional electron gas can be intrinsically anisotropic despite isotropic Fermi surface, energy dispersion, and disorder configuration. In the model we study, the anisotropy stems from the interplay between Dirac and Schrodinger features combined in a special two-band Hamiltonian describing the quasiparticles similar to the low-energy excitations in phosphorene. As a result, even scalar isotropic disorder scattering alters the nature of the carriers and results in anisotropic transport. Solving the Boltzmann equation exactly for such carriers with point-like random impurities we find a hidden knob to control the anisotropy just by tuning either the Fermi energy or temperature. Our results are expected to be generally applicable beyond the model studied here, and should stimulate further search for the alternative ways to control electron transport in advanced materials.

Download