Minimal asymptotically safe dark matter


Abstract in English

We study a simple class of dark matter models with N_f copies of electroweak fermionic multiplets, stabilized by O(N_F) global symmetry. Unlike conventional minimal dark matter which usually suffers from Landau poles, in these models the gauge coupling g_2 has a non-trivial ultraviolet fixed point, and thus is asymptotically safe as long as N_F is large enough. These fermionic n-plet models have only two free parameters: N_F and a common mass M_DM, which relate to dark matter relic abundance. We find that the mass of triplet fermionic dark matter with N_F being dozens of flavors can be several hundred GeV, which is testable on LHC. A benefit of large N_F is that DM pair annihilation rate in dwarf galaxies is effectively suppressed by 1/N_F, and thus they can evade the constraint from gamma-ray continuous spectrum observation. For the case of triplets, we find that the models in the range 3 <= N_F <= 20 are consistent with all current experiments. However, for N_F quintuplets, even with large N_F they are still disfavored by the gamma-ray continuous spectrum.

Download