Holomorphic fractional Fourier transforms


Abstract in English

The Fractional Fourier Transform (FrFT) has widespread applications in areas like signal analysis, Fourier optics, diffraction theory, etc. The Holomorphic Fractional Fourier Transform (HFrFT) proposed in the present paper may be used in the same wide range of applications with improved properties. The HFrFT of signals spans a one-parameter family of (essentially) holomorphic functions, where the parameter takes values in the bounded interval $tin (0,pi/2)$. At the boundary values of the parameter, one obtains the original signal at $t=0$ and its Fourier transform at the other end of the interval $t=pi/2$. If the initial signal is $L^2 $, then, for an appropriate choice of inner product that will be detailed below, the transform is unitary for all values of the parameter in the interval. This transform provides a heat kernel smoothening of the signals while preserving unitarity for $L^2$-signals and continuously interpolating between the original signal and its Fourier transform.

Download