Do you want to publish a course? Click here

Asymptotic profiles for damped plate equations with rotational inertia terms

49   0   0.0 ( 0 )
 Added by Ryo Ikehata
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We consider the Cauchy problem for plate equations with rotational inertia and frictional damping terms. We will derive asymptotic profiles of the solution in L^2-sense as time goes to infinity in the case when the initial data have high and low regularity, respectively. Especially, in the low regularity case of the initial data one encounters the regularity-loss structure of the solutions, and the analysis is more delicate. We employ the so-called Fourier splitting method combined with the explicit expression of the solutions (high frequency estimates) and the method due to Ikehata (low frequency estimates).



rate research

Read More

116 - Hironori Michihisa 2017
In this paper we obtain higher order asymptotic profilles of solutions to the Cauchy problem of the linear damped wave equation in $textbf{R}^n$ begin{equation*} u_{tt}-Delta u+u_t=0, qquad u(0,x)=u_0(x), quad u_t(0,x)=u_1(x), end{equation*} where $nintextbf{N}$ and $u_0$, $u_1in L^2(textbf{R}^n)$. Established hyperbolic part of asymptotic expansion seems to be new in the sense that the order of the expansion of the hyperbolic part depends on the spatial dimension.
The aim of this article is to describe asymptotic profiles for the Kirchhoff equation, and to establish time decay properties and dispersive estimates for Kirchhoff equations. For this purpose, the method of asymptotic integration is developed for the corresponding linear equations and representation formulae for their solutions are obtained. These formulae are analysed further to obtain the time decay rate of $L^p$--$L^q$ norms of propagators for the corresponding Cauchy problems.
190 - Said Benachour 2007
The large time behavior of zero mass solutions to the Cauchy problem for a convection-diffusion equation. We provide conditions on the size and shape of the initial datum such that the large time asymptotics of solutions is given either by the derivative of the Guass-Weierstrass kernel or by a self-similar solution or by a hyperbolic N-wave
199 - Said Benachour 2007
The large time behavior of solutions to Cauchy problem for viscous Hamilton-Jacobi equation is classified. The large time asymptotics are given by very singular self-similar solutions on one hand and by self-similar viscosity solutions on the other hand
This paper is concerned with the nonlinear damped wave equation on a measure space with a self-adjoint operator, instead of the standard Laplace operator. Under a certain decay estimate on the corresponding heat semigroup, we establish the linear estimates which generalize the so-called Matsumura estimates, and prove the small data global existence of solutions to the damped wave equation based on the linear estimates. Our approach is based on a direct spectral analysis analogous to the Fourier analysis. The self-adjoint operators treated in this paper include some important examples such as the Laplace operators on Euclidean spaces, the Dirichlet Laplacian on an arbitrary open set, the Robin Laplacian on an exterior domain, the Schrodinger operator, the elliptic operator, the Laplacian on Sierpinski gasket, and the fractional Laplacian.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا