Do you want to publish a course? Click here

A broadband look at the old and new ULXs of NGC 6946

72   0   0.0 ( 0 )
 Added by Hannah Earnshaw
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two recent observations of the nearby galaxy NGC 6946 with NuSTAR, one simultaneous with an XMM-Newton observation, provide an opportunity to examine its population of bright accreting sources from a broadband perspective. We study the three known ultraluminous X-ray sources (ULXs) in the galaxy, and find that ULX-1 and ULX-2 have very steep power-law spectra with $Gamma=3.6^{+0.4}_{-0.3}$ in both cases. Their properties are consistent with being super-Eddington accreting sources with the majority of their hard emission obscured and down-scattered. ULX-3 (NGC 6946 X-1) is significantly detected by both XMM-Newton and NuSTAR at $L_{rm X}=(6.5pm0.1)times10^{39}$ erg s$^{-1}$, and has a power-law spectrum with $Gamma=2.51pm0.05$. We are unable to identify a high-energy break in its spectrum like that found in other ULXs, but the soft spectrum likely hinders our ability to detect one. We also characterise the new source, ULX-4, which is only detected in the joint XMM-Newton and NuSTAR observation, at $L_{rm X}=(2.27pm0.07)times10^{39}$ erg s$^{-1}$, and is absent in a Chandra observation ten days later. It has a very hard cut-off power-law spectrum with $Gamma=0.7pm0.1$ and $E_{rm cut}=11^{+9}_{-4}$ keV. We do not detect pulsations from ULX-4, but its transient nature can be explained either as a neutron star ULX briefly leaving the propeller regime or as a micro-tidal disruption event induced by a stellar-mass compact object.

rate research

Read More

134 - I. Platais 2011
We present comprehensive cluster membership and gr photometry of the prototypical old, metal-rich Galactic star cluster NGC 6791. The proper-motion catalog contains 58,901 objects down to g=24, limited to a circular area of radius 30 arcmin. The highest precision of the proper motions is 0.08 mas/yr. Our proper motions confirm cluster membership of all main and also some rare constituents of NGC 6791. The total number of probable cluster members down to g=22 (M_V=+8) is 4800, corresponding to M_tot=5000 M_solar. New findings include an extended horizontal branch in this cluster. The angular radius of NGC 6791 is at least 15 arcmin (the effective radius is R_h=4.4 arcmin while the tidal radius is r_t=23 arcmin). The luminosity function of the cluster peaks at M_g=+4.5 and then steadily declines toward fainter magnitudes. Our data provide evidence that differential reddening may not be ignored in NGC 6791.
The relatively nearby spiral galaxy NGC~6946 is one of the most actively star forming galaxies in the local Universe. Ten supernovae (SNe) have been observed since 1917, and hence NGC6946 surely contains a large number of supernova remnants (SNRs). Here we report a new optical search for these SNRs using narrow-band images obtained with the WIYN telescope. We identify 147 emission nebulae as likely SNRs, based on elevated [SII]:Halpha ratios compared to HII regions. We have obtained spectra of 102 of these nebulae with Gemini North-GMOS; of these, 89 have [SII]:Halpha ratios greater than 0.4, the canonical optical criterion for identifying SNRs. There is very little overlap between our sample and the SNR candidates identified by Lacey et al. (2001) from radio data. Also, very few of our SNR candidates are known X-ray sources, unlike the situation in some other galaxies such as M33 and M83. The emission line ratios, e.g., [NII]:Halpha, of the candidates in NGC6946 are typical of those observed in SNR samples from other galaxies with comparable metallicity. None of the candidates observed in our low-resolution spectra show evidence of anomalous abundances or significant velocity broadening. A search for emission at the sites of all the historical SNe in NGC6946 resulted in detections for only two: SN1980K and SN2004et. Spectra of both show very broad, asymmetric line profiles, consistent with the interaction between SN ejecta and the progenitor stars circumstellar material, as seen in late spectra from other core-collapse SNe of similar age.
We investigate the spatial coincidence of ultra-luminous X-ray sources (ULXs) with young massive stellar clusters. In particular we perform astrometry on Chandra and HST data of two ULXs that are possibly associated with such clusters. To date M82 X-1 is the only ULX claimed to be coincident with a young massive stellar cluster. We remeasure the position of this source with a high accuracy and find that the position of the X-ray source is 0.65 arcsec away from the stellar cluster, corresponding to an offset significance of 3 sigma. We also report the discovery of a new candidate, based on observations of NGC 7479. One of the ULXs observed in three X-ray observations is found to be spatially coincident (within 1 sigma of the position error) with a young super-cluster observed in the HST images. In the brightest state, the absorbed luminosity of the ULX is a few times $10^{40}$ erg s$^{-1}$, and in the faintest state below the detection limit of $sim4$ times $10^{39}$ erg s$^{-1}$. The luminosity in the brightest state requires an accreting black hole mass of at least 100 M$_{odot}$ assuming isotropic emission. However it is possible that the source is contaminated by X-ray emission from the nearby supernova SN2009jf. In this case the luminosity of the ULX is in a range where it is strongly debated whether it is a super-Eddington stellar mass black hole or an intermediate mass black hole. The colours of the host cluster indicate a young stellar population, with an age between 10 and 100 Myr. The total stellar mass of the cluster is $sim5cdot10^{5}$M$_{odot}$.
111 - Frank Verbunt , Eric Cator 2017
We take a fresh look at the determination of distances and velocities of neutron stars. The conversion of a parallax measurement into a distance, or distance probability distribution, has led to a debate quite similar to the one involving Cepheids, centering on the question whether priors can be used when discussing a single system. With the example of PSRJ0218+4232 we show that a prior is necessary to determine the probability distribution for the distance. The distance of this pulsar implies a gamma-ray luminosity larger than 10% of its spindown luminosity. For velocities the debate is whether a single Maxwellian describes the distribution for young pulsars. By limiting our discussion to accurate (VLBI) measurements we argue that a description with two Maxwellians, with distribution parameters sigma1=77 and sigma2=320 km/s, is significantly better. Corrections for galactic rotation, to derive velocities with respect to the local standards of rest, are insignificant.
The positron fraction in cosmic rays was found to be a steadily increasing in function of energy, above $sim$ 10 GeV. This behaviour contradicts standard astrophysical mechanisms, in which positrons are secondary particles, produced in the interactions of primary cosmic rays during the propagation in the interstellar medium. The observed anomaly in the positron fraction triggered a lot of excitement, as it could be interpreted as an indirect signature of the presence of dark matter species in the Galaxy. Alternatively, it could be produced by nearby astrophysical sources, such as pulsars. Both hypotheses are probed in this work in light of the latest AMS-02 positron fraction measurements. The transport of the primary and secondary positrons in the Galaxy is described using a semi-analytic two-zone model. MicrOMEGAs is used to model the positron flux generated by dark matter species. The description of the positron fraction from astrophysical sources is based on the pulsar observations included in the ATNF catalogue. We find that the mass of the favoured dark matter candidates is always larger than 500 GeV. The only dark matter species that fulfils the numerous gamma ray and cosmic microwave background bounds is a particle annihilating into four leptons through a light scalar or vector mediator, with a mixture of tau (75%) and electron (25%) channels, and a mass between 0.5 and 1 TeV. The positron anomaly can also be explained by a single astrophysical source and a list of five pulsars from the ATNF catalogue is given. Those results are obtained with the cosmic ray transport parameters that best fit the B/C ratio. Uncertainties in the propagation parameters turn out to be very significant. In the WIMP annihilation cross section to mass plane for instance, they overshadow the error contours derived from the positron data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا