Do you want to publish a course? Click here

Image-based reconstruction for the impact problems by using DPNNs

46   0   0.0 ( 0 )
 Added by Yu Li
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

With the improvement of the pattern recognition and feature extraction of Deep Neural Networks (DPNNs), image-based design and optimization have been widely used in multidisciplinary researches. Recently, a Reconstructive Neural Network (ReConNN) has been proposed to obtain an image-based model from an analysis-based model [1, 2], and a steady-state heat transfer of a heat sink has been successfully reconstructed. Commonly, this method is suitable to handle stable-state problems. However, it has difficulties handling nonlinear transient impact problems, due to the bottlenecks of the Deep Neural Network (DPNN). For example, nonlinear transient problems make it difficult for the Generative Adversarial Network (GAN) to generate various reasonable images. Therefore, in this study, an improved ReConNN method is proposed to address the mentioned weaknesses. Time-dependent ordered images can be generated. Furthermore, the improved method is successfully applied in impact simulation case and engineering experiment. Through the experiments, comparisons and analyses, the improved method is demonstrated to outperform the former one in terms of its accuracy, efficiency and costs.



rate research

Read More

In the recent years, there has been a significant improvement in the quality of samples produced by (deep) generative models such as variational auto-encoders and generative adversarial networks. However, the representation capabilities of these methods still do not capture the full distribution for complex classes of images, such as human faces. This deficiency has been clearly observed in previous works that use pre-trained generative models to solve imaging inverse problems. In this paper, we suggest to mitigate the limited representation capabilities of generators by making them image-adaptive and enforcing compliance of the restoration with the observations via back-projections. We empirically demonstrate the advantages of our proposed approach for image super-resolution and compressed sensing.
Terahertz (THz) sensing is a promising imaging technology for a wide variety of different applications. Extracting the interpretable and physically meaningful parameters for such applications, however, requires solving an inverse problem in which a model function determined by these parameters needs to be fitted to the measured data. Since the underlying optimization problem is nonconvex and very costly to solve, we propose learning the prediction of suitable parameters from the measured data directly. More precisely, we develop a model-based autoencoder in which the encoder network predicts suitable parameters and the decoder is fixed to a physically meaningful model function, such that we can train the encoding network in an unsupervised way. We illustrate numerically that the resulting network is more than 140 times faster than classical optimization techniques while making predictions with only slightly higher objective values. Using such predictions as starting points of local optimization techniques allows us to converge to better local minima about twice as fast as optimization without the network-based initialization.
220 - Zhipeng Li , Siqi Ye , Yong Long 2019
Recent years have witnessed growing interest in machine learning-based models and techniques for low-dose X-ray CT (LDCT) imaging tasks. The methods can typically be categorized into supervised learning methods and unsupervised or model-based learning methods. Supervised learning methods have recently shown success in image restoration tasks. However, they often rely on large training sets. Model-based learning methods such as dictionary or transform learning do not require large or paired training sets and often have good generalization properties, since they learn general properties of CT image sets. Recent works have shown the promising reconstruction performance of methods such as PWLS-ULTRA that rely on clustering the underlying (reconstructed) image patches into a learned union of transforms. In this paper, we propose a new Supervised-UnsuPERvised (SUPER) reconstruction framework for LDCT image reconstruction that combines the benefits of supervised learning methods and (unsupervised) transform learning-based methods such as PWLS-ULTRA that involve highly image-adaptive clustering. The SUPER model consists of several layers, each of which includes a deep network learned in a supervised manner and an unsupervised iterative method that involves image-adaptive components. The SUPER reconstruction algorithms are learned in a greedy manner from training data. The proposed SUPER learning methods dramatically outperform both the constituent supervised learning-based networks and iterative algorithms for LDCT, and use much fewer iterations in the iterative reconstruction modules.
Despite its best performance in image denoising, the supervised deep denoising methods require paired noise-clean data, which are often unavailable. To address this challenge, Noise2Noise was designed based on the fact that paired noise-clean images can be replaced by paired noise-noise images that are easier to collect. However, in many scenarios the collection of paired noise-noise images is still impractical. To bypass labeled images, Noise2Void methods predict masked pixels from their surroundings with single noisy images only and give improved denoising results that still need improvements. An observation on classic denoising methods is that non-local mean (NLM) outcomes are typically superior to locally denoised results. In contrast, Noise2Void and its variants do not utilize self-similarities in an image as the NLM-based methods do. Here we propose Noise2Sim, an NLM-inspired self-learning method for image denoising. Specifically, Noise2Sim leverages the self-similarity of image pixels to train the denoising network, requiring single noisy images only. Our theoretical analysis shows that Noise2Sim tends to be equivalent to Noise2Noise under mild conditions. To efficiently manage the computational burden for globally searching similar pixels, we design a two-step procedure to provide data for Noise2Sim training. Extensive experiments demonstrate the superiority of Noise2Sim on common benchmark datasets.
Fast and accurate reconstruction of magnetic resonance (MR) images from under-sampled data is important in many clinical applications. In recent years, deep learning-based methods have been shown to produce superior performance on MR image reconstruction. However, these methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations. In order to overcome this challenge, we propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients privacy. However, the generalizability of models trained with the FL setting can still be suboptimal due to domain shift, which results from the data collected at multiple institutions with different sensors, disease types, and acquisition protocols, etc. With the motivation of circumventing this challenge, we propose a cross-site modeling for MR image reconstruction in which the learned intermediate latent features among different source sites are aligned with the distribution of the latent features at the target site. Extensive experiments are conducted to provide various insights about FL for MR image reconstruction. Experimental results demonstrate that the proposed framework is a promising direction to utilize multi-institutional data without compromising patients privacy for achieving improved MR image reconstruction. Our code will be available at https://github.com/guopengf/FLMRCM.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا