Do you want to publish a course? Click here

Zeros and approximations of Holant polynomials on the complex plane

290   0   0.0 ( 0 )
 Added by Philipp Fischbeck
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present fully polynomial approximation schemes for a broad class of Holant problems with complex edge weights, which we call Holant polynomials. We transform these problems into partition functions of abstract combinatorial structures known as polymers in statistical physics. Our method involves establishing zero-free regions for the partition functions of polymer models and using the most significant terms of the cluster expansion to approximate them. Results of our technique include new approximation and sampling algorithms for a diverse class of Holant polynomials in the low-temperature regime and approximation algorithms for general Holant problems with small signature weights. Additionally, we give randomised approximation and sampling algorithms with faster running times for more restrictive classes. Finally, we improve the known zero-free regions for a perfect matching polynomial.



rate research

Read More

This paper formalizes connections between stability of polynomials and convergence rates of Markov Chain Monte Carlo (MCMC) algorithms. We prove that if a (multivariate) partition function is nonzero in a region around a real point $lambda$ then spectral independence holds at $lambda$. As a consequence, for Holant-type problems (e.g., spin systems) on bounded-degree graphs, we obtain optimal $O(nlog n)$ mixing time bounds for the single-site update Markov chain known as the Glauber dynamics. Our result significantly improves the running time guarantees obtained via the polynomial interpolation method of Barvinok (2017), refined by Patel and Regts (2017). There are a variety of applications of our results. In this paper, we focus on Holant-type (i.e., edge-coloring) problems, including weighted edge covers and weighted even subgraphs. For the weighted edge cover problem (and several natural generalizations) we obtain an $O(nlog{n})$ sampling algorithm on bounded-degree graphs. The even subgraphs problem corresponds to the high-temperature expansion of the ferromagnetic Ising model. We obtain an $O(nlog{n})$ sampling algorithm for the ferromagnetic Ising model with a nonzero external field on bounded-degree graphs, which improves upon the classical result of Jerrum and Sinclair (1993) for this class of graphs. We obtain further applications to antiferromagnetic two-spin models on line graphs, weighted graph homomorphisms, tensor networks, and more.
We study the problem of allocating $m$ items to $n$ agents subject to maximizing the Nash social welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and we show that a simple randomized rounding algorithm gives a $1/e$ approximation factor of the objective. Our main technical contribution is an extension of Gurvitss lower bound on the coefficient of the square-free monomial of a degree $m$-homogeneous stable polynomial on $m$ variables to all homogeneous polynomials. We use this extension to analyze the expected welfare of the allocation returned by our randomized rounding algorithm.
165 - Dehua Cheng , Yu Cheng , Yan Liu 2015
We consider a fundamental algorithmic question in spectral graph theory: Compute a spectral sparsifier of random-walk matrix-polynomial $$L_alpha(G)=D-sum_{r=1}^dalpha_rD(D^{-1}A)^r$$ where $A$ is the adjacency matrix of a weighted, undirected graph, $D$ is the diagonal matrix of weighted degrees, and $alpha=(alpha_1...alpha_d)$ are nonnegative coefficients with $sum_{r=1}^dalpha_r=1$. Recall that $D^{-1}A$ is the transition matrix of random walks on the graph. The sparsification of $L_alpha(G)$ appears to be algorithmically challenging as the matrix power $(D^{-1}A)^r$ is defined by all paths of length $r$, whose precise calculation would be prohibitively expensive. In this paper, we develop the first nearly linear time algorithm for this sparsification problem: For any $G$ with $n$ vertices and $m$ edges, $d$ coefficients $alpha$, and $epsilon > 0$, our algorithm runs in time $O(d^2mlog^2n/epsilon^{2})$ to construct a Laplacian matrix $tilde{L}=D-tilde{A}$ with $O(nlog n/epsilon^{2})$ non-zeros such that $tilde{L}approx_{epsilon}L_alpha(G)$. Matrix polynomials arise in mathematical analysis of matrix functions as well as numerical solutions of matrix equations. Our work is particularly motivated by the algorithmic problems for speeding up the classic Newtons method in applications such as computing the inverse square-root of the precision matrix of a Gaussian random field, as well as computing the $q$th-root transition (for $qgeq1$) in a time-reversible Markov model. The key algorithmic step for both applications is the construction of a spectral sparsifier of a constant degree random-walk matrix-polynomials introduced by Newtons method. Our algorithm can also be used to build efficient data structures for effective resistances for multi-step time-reversible Markov models, and we anticipate that it could be useful for other tasks in network analysis.
We study the generalized min sum set cover (GMSSC) problem, wherein given a collection of hyperedges $E$ with arbitrary covering requirements $k_e$, the goal is to find an ordering of the vertices to minimize the total cover time of the hyperedges; a hyperedge $e$ is considered covered by the first time when $k_e$ many of its vertices appear in the ordering. We give a $4.642$ approximation algorithm for GMSSC, coming close to the best possible bound of $4$, already for the classical special case (with all $k_e=1$) of min sum set cover (MSSC) studied by Feige, Lov{a}sz and Tetali, and improving upon the previous best known bound of $12.4$ due to Im, Sviridenko and van der Zwaan. Our algorithm is based on transforming the LP solution by a suitable kernel and applying randomized rounding. This also gives an LP-based $4$ approximation for MSSC. As part of the analysis of our algorithm, we also derive an inequality on the lower tail of a sum of independent Bernoulli random variables, which might be of independent interest and broader utility. Another well-known special case is the min sum vertex cover (MSVC) problem, in which the input hypergraph is a graph and $k_e = 1$, for every edge. We give a $16/9$ approximation for MSVC, and show a matching integrality gap for the natural LP relaxation. This improves upon the previous best $1.999946$ approximation of Barenholz, Feige and Peleg. (The claimed $1.79$ approximation result of Iwata, Tetali and Tripathi for the MSVC turned out have an unfortunate, seemingly unfixable, mistake in it.) Finally, we revisit MSSC and consider the $ell_p$ norm of cover-time of the hyperedges. Using a dual fitting argument, we show that the natural greedy algorithm achieves tight, up to NP-hardness, approximation guarantees of $(p+1)^{1+1/p}$, for all $pge 1$. For $p=1$, this gives yet another proof of the $4$ approximation for MSSC.
83 - Ilia Krasikov 2003
Let $x_1$ and $x_k$ be the least and the largest zeros of the Laguerre or Jacobi polynomial of degree $k.$ We shall establish sharp inequalities of the form $x_1 <A, x_k >B,$ which are uniform in all the parameters involved. Together with inequalities in the opposite direction, recently obtained by the author, this locates the extreme zeros of classical orthogonal polynomials with the relative precision, roughly speaking, $O(k^{-2/3}).$
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا