Do you want to publish a course? Click here

On the usefulness of existing Solar-wind models for pulsar timing corrections

100   0   0.0 ( 0 )
 Added by Caterina Tiburzi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dispersive delays due to the Solar wind introduce excess noise in high-precision pulsar timing experiments, and must be removed in order to achieve the accuracy needed to detect, e.g., low-frequency gravitational waves. In current pulsar timing experiments, this delay is usually removed by approximating the electron density distribution in the Solar wind either as spherically symmetric, or with a two-phase model that describes the contributions from both high- and low-speed phases of the Solar wind. However, no dataset has previously been available to test the performance and limitations of these models over extended timescales and with sufficient sensitivity. Here we present the results of such a test with an optimal dataset of observations of pulsar J0034-0534, taken with the German stations of LOFAR. We conclude that the spherical approximation performs systematically better than the two-phase model at almost all angular distances, with a residual root-mean-square (rms) given by the two-phase model being up to 28% larger than the result obtained with the spherical approximation. Nevertheless, the spherical approximation remains insufficiently accurate in modelling the Solar-wind delay (especially within 20 degrees of angular distance from the Sun), as it leaves timing residuals with rms values that reach the equivalent of 0.3 microseconds at 1400 MHz. This is because a spherical model ignores the large daily variations in electron density observed in the Solar wind. In the short term, broadband observations or simultaneous observations at low frequencies are the most promising way forward to correct for Solar-wind induced delay variations.



rate research

Read More

High-precision pulsar timing requires accurate corrections for dispersive delays of radio waves, parametrized by the dispersion measure (DM), particularly if these delays are variable in time. In a previous paper we studied the Solar-wind (SW) models used in pulsar timing to mitigate the excess of DM annually induced by the SW, and found these to be insufficient for high-precision pulsar timing. Here we analyze additional pulsar datasets to further investigate which aspects of the SW models currently used in pulsar timing can be readily improved, and at what levels of timing precision SW mitigation is possible. Our goals are to verify: a) whether the data are better described by a spherical model of the SW with a time-variable amplitude rather than a time-invariant one as suggested in literature, b) whether a temporal trend of such a models amplitudes can be detected. We use the pulsar-timing technique on low-frequency pulsar observations to estimate the DM and quantify how this value changes as the Earth moves around the Sun. Specifically, we monitor the DM in weekly to monthly observations of 14 pulsars taken with LOFAR across time spans of up to 6 years. We develop an informed algorithm to separate the interstellar variations in DM from those caused by the SW and demonstrate the functionality of this algorithm with extensive simulations. Assuming a spherically symmetric model for the SW density, we derive the amplitude of this model for each year of observations. We show that a spherical model with time-variable amplitude models the observations better than a spherical model with constant amplitude, but that both approaches leave significant SW induced delays uncorrected in a number of pulsars in the sample. The amplitude of the spherical model is found to be variable in time, as opposed to what has been previously suggested.
While pulsars possess exceptional rotational stability, large scale timing studies have revealed at least two distinct types of irregularities in their rotation: red timing noise and glitches. Using modern Bayesian techniques, we investigated the timing noise properties of 300 bright southern-sky radio pulsars that have been observed over 1.0-4.8 years by the upgraded Molonglo Observatory Synthesis Telescope (MOST). We reanalysed the spin and spin-down changes associated with nine previously reported pulsar glitches, report the discovery of three new glitches and four unusual glitch-like events in the rotational evolution of PSR J1825$-$0935. We develop a refined Bayesian framework for determining how red noise strength scales with pulsar spin frequency ($ u$) and spin-down frequency ($dot{ u}$), which we apply to a sample of 280 non-recycled pulsars. With this new method and a simple power-law scaling relation, we show that red noise strength scales across the non-recycled pulsar population as $ u^{a} |dot{ u}|^{b}$, where $a = -0.84^{+0.47}_{-0.49}$ and $b = 0.97^{+0.16}_{-0.19}$. This method can be easily adapted to utilise more complex, astrophysically motivated red noise models. Lastly, we highlight our timing of the double neutron star PSR J0737$-$3039, and the rediscovery of a bright radio pulsar originally found during the first Molonglo pulsar surveys with an incorrectly catalogued position.
Merging supermassive black hole binaries produce low-frequency gravitational waves, which pulsar timing experiments are searching for. Much of the current theory is developed within the plane-wave formalism, and here we develop the more general Fresnel formalism. We show that Fresnel corrections to gravitational wave timing residual models allow novel measurements to be made, such as direct measurements of the source distance from the timing residual phase and frequency, as well as direct measurements of chirp mass from a monochromatic source. Probing the Fresnel corrections in these models will require future pulsar timing arrays with more distant pulsars across our Galaxy (ideally at the distance of the Magellanic Clouds), timed with precisions less than $100$ ns, with distance uncertainties reduced to the order of the gravitational wavelength. We find that sources with chirp mass of order $10^9 mathrm{M}_odot$ and orbital frequency $omega_0 > 10$ nHz are good candidates for probing Fresnel corrections. With these conditions met, the measured source distance uncertainty can be made less than 10 per cent of the distance to the source for sources out to $sim 100$ Mpc, source sky localization can be reduced to sub-arcminute precision, and source volume localization can be made to less than $1 text{Mpc}^3$ for sources out to 1-Gpc distances.
The main goal of pulsar timing array experiments is to detect correlated signals such as nanohertz-frequency gravitational waves. Pulsar timing data collected in dense monitoring campaigns can also be used to study the stars themselves, their binary companions, and the intervening ionised interstellar medium. Timing observations are extraordinarily sensitive to changes in path length between the pulsar and the Earth, enabling precise measurements of the pulsar positions, distances and velocities, and the shapes of their orbits. Here we present a timing analysis of 25 pulsars observed as part of the Parkes Pulsar Timing Array (PPTA) project over time spans of up to 24 yr. The data are from the second data release of the PPTA, which we have extended by including legacy data. We make the first detection of Shapiro delay in four Southern pulsars (PSRs J1017$-$7156, J1125$-$6014, J1545$-$4550, and J1732$-$5049), and of parallax in six pulsars. The prominent Shapiro delay of PSR J1125$-$6014 implies a neutron star mass of $M_p = 1.5 pm 0.2 M_odot$ (68% credibility interval). Measurements of both Shapiro delay and relativistic periastron advance in PSR J1600$-$3053 yield a large but uncertain pulsar mass of $M_p = 2.06^{+0.44}_{-0.41}$ M$_odot$ (68% credibility interval). We measure the distance to PSR J1909$-$3744 to a precision of 10 lyr, indicating that for gravitational wave periods over a decade, the pulsar provides a coherent baseline for pulsar timing array experiments.
Variations in the solar wind density introduce variable delays into pulsar timing observations. Current pulsar timing analysis programs only implement simple models of the solar wind, which not only limit the timing accuracy, but can also affect measurements of pulsar rotational, astrometric and orbital parameters. We describe a new model of the solar wind electron density content which uses observations from the Wilcox Solar Observatory of the solar magnetic field. We have implemented this model into the tempo2 pulsar timing package. We show that this model is more accurate than previous models and that these corrections are necessary for high precision pulsar timing applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا