No Arabic abstract
For the last few years, the NASA Quantum Artificial Intelligence Laboratory (QuAIL) has been performing research to assess the potential impact of quantum computers on challenging computational problems relevant to future NASA missions. A key aspect of this research is devising methods to most effectively utilize emerging quantum computing hardware. Research questions include what experiments on early quantum hardware would give the most insight into the potential impact of quantum computing, the design of algorithms to explore on such hardware, and the development of tools to minimize the quantum resource requirements. We survey work relevant to these questions, with a particular emphasis on our recent work in quantum algorithms and applications, in elucidating mechanisms of quantum mechanics and their uses for quantum computational purposes, and in simulation, compilation, and physics-inspired classical algorithms. To our early application thrusts in planning and scheduling, fault diagnosis, and machine learning, we add thrusts related to robustness of communication networks and the simulation of many-body systems for material science and chemistry. We provide a brief update on quantum annealing work, but concentrate on gate-model quantum computing research advances within the last couple of years.
For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. The phase of these drives can be used to generate zero-duration arbitrary virtual Z-gates which, combined with two $X_{pi/2}$ gates, can generate any SU(2) gate. Here we show how to best utilize these virtual Z-gates to both improve algorithms and correct pulse errors. We perform randomized benchmarking using a Clifford set of Hadamard and Z-gates and show that the error per Clifford is reduced versus a set consisting of standard finite-duration X and Y gates. Z-gates can correct unitary rotation errors for weakly anharmonic qubits as an alternative to pulse shaping techniques such as DRAG. We investigate leakage and show that a combination of DRAG pulse shaping to minimize leakage and Z-gates to correct rotation errors (DRAGZ) realizes a 13.3~ns $X_{pi/2}$ gate characterized by low error ($1.95[3]times 10^{-4}$) and low leakage ($3.1[6]times 10^{-6}$). Ultimately leakage is limited by the finite temperature of the qubit, but this limit is two orders-of-magnitude smaller than pulse errors due to decoherence.
This is a collection of statements gathered on the occasion of the Quantum Physics of Nature meeting in Vienna.
We study the dynamics of Rydberg ions trapped in a linear Paul trap, and discuss the properties of ionic Rydberg states in the presence of the static and time-dependent electric fields constituting the trap. The interactions in a system of many ions are investigated and coupled equations of the internal electronic states and the external oscillator modes of a linear ion chain are derived. We show that strong dipole-dipole interactions among the ions can be achieved by microwave dressing fields. Using low-angular momentum states with large quantum defect the internal dynamics can be mapped onto an effective spin model of a pair of dressed Rydberg states that describes the dynamics of Rydberg excitations in the ion crystal. We demonstrate that excitation transfer through the ion chain can be achieved on a nanosecond timescale and discuss the implementation of a fast two-qubit gate in the ion chain.
We develop a framework for analyzing layered quantum algorithms such as quantum alternating operator ansatze. Our framework relates quantum cost gradient operators, derived from the cost and mixing Hamiltonians, to classical cost difference functions that reflect cost function neighborhood structure. By considering QAOA circuits from the Heisenberg picture, we derive exact general expressions for expectation values as series expansions in the algorithm parameters, cost gradient operators, and cost difference functions. This enables novel interpretability and insight into QAOA behavior in various parameter regimes. For single- level QAOA1 we show the leading-order changes in the output probabilities and cost expectation value explicitly in terms of classical cost differences, for arbitrary cost functions. This demonstrates that, for sufficiently small positive parameters, probability flows from lower to higher cost states on average. By selecting signs of the parameters, we can control the direction of flow. We use these results to derive a classical random algorithm emulating QAOA1 in the small-parameter regime, i.e., that produces bitstring samples with the same probabilities as QAOA1 up to small error. For deeper QAOAp circuits we apply our framework to derive analogous and additional results in several settings. In particular we show QAOA always beats random guessing. We describe how our framework incorporates cost Hamiltonian locality for specific problem classes, including causal cone approaches, and applies to QAOA performance analysis with arbitrary parameters. We illuminate our results with a number of examples including applications to QUBO problems, MaxCut, and variants of MaxSat. We illustrate the application to QAOA circuits using mixing unitaries beyond the transverse-field mixer through two examples of constrained optimization, Max Independent Set and Graph Coloring.
The essence of the path integral method in quantum physics can be expressed in terms of two relations between unitary propagators, describing perturbations of the underlying system. They inherit the causal structure of the theory and its invariance properties under variations of the action. These relations determine a dynamical algebra of bounded operators which encodes all properties of the corresponding quantum theory. This novel approach is applied to non-relativistic particles, where quantum mechanics emerges from it. The method works also in interacting quantum field theories and sheds new light on the foundations of quantum physics.