Understanding wind turbine wake mixing and recovery is critical for improving the power generation and structural stability of downwind turbines in a wind farm. In the field, where incoming flow and turbine operation are constantly changing, wake recovery can be significantly influenced by dynamic wake modulation, which has not yet been explored. Here we present the first investigation of dynamic wake modulation in the near wake of a utility-scale turbine and quantify its relationship with changing conditions. This investigation is enabled using novel super-large-scale flow visualization with natural snowfall, providing unprecedented spatiotemporal resolution to resolve instantaneous changes of the wake envelope. These measurements reveal the significant influence of dynamic wake modulation on wake recovery. Further, our study uncovers the direct connection of dynamic wake modulation with operational parameters readily available to the turbine, paving the way for more precise wake prediction and control under field conditions for wind farm optimization.