Let $pi$ be an irreducible cuspidal automorphic representation of a quasi-split unitary group ${rm U}_{mathfrak n}$ defined over a number field $F$. Under the assumption that $pi$ has a generic global Arthur parameter, we establish the non-vanishing of the central value of $L$-functions, $L(frac{1}{2},pitimeschi)$, with a certain automorphic character $chi$ of ${rm U}_1$, for the case of ${mathfrak n}=2,3,4$, and for the general ${mathfrak n}geq 5$ by assuming a conjecture on certain refined properties of global Arthur packets. In consequence, we obtain some simultaneous non-vanishing results for the central $L$-values by means of the theory of endoscopy.
We prove the Archimedean period relations for Rankin-Selberg convolutions for $mathrm{GL}(n)times mathrm{GL}(n-1)$. This implies the period relations for critical values of the Rankin-Selberg L-functions for $mathrm{GL}(n)times mathrm{GL}(n-1)$.
In this article, we study the Beilinson-Bloch-Kato conjecture for motives corresponding to the Rankin-Selberg product of conjugate self-dual automorphic representations, within the framework of the Gan-Gross-Prasad conjecture. We show that if the central critical value of the Rankin-Selberg $L$-function does not vanish, then the Bloch-Kato Selmer group with coefficients in a favorable field of the corresponding motive vanishes. We also show that if the class in the Bloch-Kato Selmer group constructed from certain diagonal cycle does not vanish, which is conjecturally equivalent to the nonvanishing of the central critical first derivative of the Rankin-Selberg $L$-function, then the Bloch-Kato Selmer group is of rank one.
In this paper, we consider the family ${L_j(s)}_{j=1}^{infty}$ of $L$-functions associated to an orthonormal basis ${u_j}_{j=1}^{infty}$ of even Hecke-Maass forms for the modular group $SL(2, Z)$ with eigenvalues ${lambda_j=kappa_{j}^{2}+1/4}_{j=1}^{infty}$. We prove the following effective non-vanishing result: At least $50 %$ of the central values $L_j(1/2)$ with $kappa_j leq T$ do not vanish as $Trightarrow infty$. Furthermore, we establish effective non-vanishing results in short intervals.
We look at the values of two Dirichlet $L$-functions at the Riemann zeros (or a horizontal shift of them). Off the critical line we show that for a positive proportion of these points the pairs of values of the two $L$-functions are linearly independent over $mathbb{R}$, which, in particular, means that their arguments are different. On the critical line we show that, up to height $T$, the values are different for $cT$ of the Riemann zeros for some positive $c$.
David Ginzburg
,Dihua Jiang
,Baiying Liu
.
(2019)
.
"Erratum to On the Non-vanishing of the Central Value of the Rankin-Selberg L-functions"
.
Baiying Liu
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا