No Arabic abstract
We explore the structures of light cone and Regge limit singularities of $n$-point Virasoro conformal blocks in $c>1$ two-dimensional conformal field theories with no chiral primaries, using fusion matrix approach. These CFTs include not only holographic CFTs dual to classical gravity, but also their full quantum corrections, since this approach allows us to explore full $1/c$ corrections. As the important applications, we study time dependence of Renyi entropy after a local quench and out-of-time ordered correlator (OTOC) at late time. We first show that, the $n$-th ($n>2$) Renyi entropy after a local quench in our CFT grows logarithmically at late time, for any $c$ and any conformal dimensions of excited primary. In particular, we find that this behavior is independent of $c$, contrary to the expectation that the finite $c$ correction fixes the late time Renyi entropy to be constant. We also show that the constant part of the late time Renyi entropy is given by a monodromy matrix. We also investigate OTOCs by using the monodromy matrix. We first rewrite the monodromy matrix in terms of fusion matrix explicitly. By this expression, we find that the OTOC decays exponentially in time, and the decay rates are divided into three patterns, depending on the dimensions of external operators. We note that our result is valid for any $c>1$ and any external operator dimensions. Our monodromy matrix approach can be generalized to the Liouville theory and we show that the Liouville OTOC approaches constant in the late time regime. We emphasize that, there is a number of other applications of the fusion and the monodromy matrix approaches, such as solving the conformal bootstrap equation. Therefore, it is tempting to believe that the fusion and monodromy matrix approaches provide a key to understanding the AdS/CFT correspondence.
The light cone OPE limit provides a significant amount of information regarding the conformal field theory (CFT), like the high-low temperature limit of the partition function. We started with the light cone bootstrap in the {it general} CFT ${}_2$ with $c>1$. For this purpose, we needed an explicit asymptotic form of the Virasoro conformal blocks in the limit $z to 1$, which was unknown until now. In this study, we computed it in general by studying the pole structure of the {it fusion matrix} (or the crossing kernel). Applying this result to the light cone bootstrap, we obtained the universal total twist (or equivalently, the universal binding energy) of two particles at a large angular momentum. In particular, we found that the total twist is saturated by the value $frac{c-1}{12}$ if the total Liouville momentum exceeds beyond the {it BTZ threshold}. This might be interpreted as a black hole formation in AdS${}_3$. As another application of our light cone singularity, we studied the dynamics of entanglement after a global quench and found a Renyi phase transition as the replica number was varied. We also investigated the dynamics of the 2nd Renyi entropy after a local quench. We also provide a universal form of the Regge limit of the Virasoro conformal blocks from the analysis of the light cone singularity. This Regge limit is related to the general $n$-th Renyi entropy after a local quench and out of time ordered correlators.
Highly energetic particles traveling in the background of an asymptotically AdS black hole experience a Shapiro time delay and an angle deflection. These quantities are related to the Regge limit of a heavy-heavy-light-light four-point function of scalar operators in the dual CFT. The Schwarzschild radius of the black hole in AdS units is proportional to the ratio of the conformal dimension of the heavy operator and the central charge. This ratio serves as a useful expansion parameter; its power counts the number of stress tensors in the multi-stress tensor operators which contribute to the four-point function. In the cross-channel the four-point function is determined by the OPE coefficients and anomalous dimensions of the heavy-light double-trace operators. We explain how this data can be obtained and explicitly compute the first and second order terms in the expansion of the anomalous dimensions. We observe perfect agreement with known results in the lightcone limit, which were obtained by computing perturbative corrections to the energy eigenstates in AdS spacetimes.
We study the time evolution of Renyi entanglement entropy for locally excited states in two dimensional large central charge CFTs. It generically shows a logarithmical growth and we compute the coefficient of $log t$ term. Our analysis covers the entire parameter regions with respect to the replica number $n$ and the conformal dimension $h_O$ of the primary operator which creates the excitation. We numerically analyse relevant vacuum conformal blocks by using Zamolodchikovs recursion relation. We find that the behavior of the conformal blocks in two dimensional CFTs with a central charge $c$, drastically changes when the dimensions of external primary states reach the value $c/32$. In particular, when $h_Ogeq c/32$ and $ngeq 2$, we find a new universal formula $Delta S^{(n)}_Asimeq frac{nc}{24(n-1)}log t$. Our numerical results also confirm existing analytical results using the HHLL approximation.
Near lightcone correlators are dominated by operators with the lowest twist. We consider the contributions of such leading lowest twist multi-stress tensor operators to a heavy-heavy-light-light correlator in a CFT of any even dimensionality with a large central charge. An infinite number of such operators contribute, but their sum is described by a simple ansatz. We show that the coefficients in this ansatz can be determined recursively, thereby providing an operational procedure to compute them. This is achieved by bootstrapping the corresponding near lightcone correlator: conformal data for any minimal-twist determines that for the higher minimal-twist and so on. To illustrate this procedure in four spacetime dimensions we determine the contributions of double- and triple-stress tensors. We compute the OPE coefficients; whenever results are available in the literature, we observe complete agreement. We also compute the contributions of double-stress tensors in six spacetime dimensions and determine the corresponding OPE coefficients. In all cases the results are consistent with the exponentiation of the near lightcone correlator. This is similar to the situation in two spacetime dimensions for the Virasoro vacuum block.
We apply the analytic conformal bootstrap method to study weakly coupled conformal gauge theories in four dimensions. We employ twist conformal blocks to find the most general form of the one-loop four-point correlation function of identical scalar operators, without any reference to Feynman calculations. The method relies only on symmetries of the model. In particular, it does not require introducing any regularisation and it is free from the redundancies usually associated with the Feynman approach. By supplementing the general solution with known data for a small number of operators, we recover explicit forms of one-loop correlation functions of four Konishi operators as well as of four half-BPS operators $mathcal{O}_{20}$ in $mathcal{N}=4$ super Yang-Mills.