Do you want to publish a course? Click here

Spatio-Temporal Action Localization in a Weakly Supervised Setting

217   0   0.0 ( 0 )
 Added by Kurt Degiorgio
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Enabling computational systems with the ability to localize actions in video-based content has manifold applications. Traditionally, such a problem is approached in a fully-supervised setting where video-clips with complete frame-by-frame annotations around the actions of interest are provided for training. However, the data requirements needed to achieve adequate generalization in this setting is prohibitive. In this work, we circumvent this issue by casting the problem in a weakly supervised setting, i.e., by considering videos as labelled `sets of unlabelled video segments. Firstly, we apply unsupervised segmentation to take advantage of the elementary structure of each video. Subsequently, a convolutional neural network is used to extract RGB features from the resulting video segments. Finally, Multiple Instance Learning (MIL) is employed to predict labels at the video segment level, thus inherently performing spatio-temporal action detection. In contrast to previous work, we make use of a different MIL formulation in which the label of each video segment is continuous rather then discrete, making the resulting optimization function tractable. Additionally, we utilize a set splitting technique for regularization. Experimental results considering multiple performance indicators on the UCF-Sports data-set support the effectiveness of our approach.



rate research

Read More

258 - Zheng Shou , Hang Gao , Lei Zhang 2018
Temporal Action Localization (TAL) in untrimmed video is important for many applications. But it is very expensive to annotate the segment-level ground truth (action class and temporal boundary). This raises the interest of addressing TAL with weak supervision, namely only video-level annotations are available during training). However, the state-of-the-art weakly-supervised TAL methods only focus on generating good Class Activation Sequence (CAS) over time but conduct simple thresholding on CAS to localize actions. In this paper, we first develop a novel weakly-supervised TAL framework called AutoLoc to directly predict the temporal boundary of each action instance. We propose a novel Outer-Inner-Contrastive (OIC) loss to automatically discover the needed segment-level supervision for training such a boundary predictor. Our method achieves dramatically improved performance: under the IoU threshold 0.5, our method improves mAP on THUMOS14 from 13.7% to 21.2% and mAP on ActivityNet from 7.4% to 27.3%. It is also very encouraging to see that our weakly-supervised method achieves comparable results with some fully-supervised methods.
Weakly supervised action localization is a challenging task with extensive applications, which aims to identify actions and the corresponding temporal intervals with only video-level annotations available. This paper analyzes the order-sensitive and location-insensitive properties of actions, and embodies them into a self-augmented learning framework to improve the weakly supervised action localization performance. To be specific, we propose a novel two-branch network architecture with intra/inter-action shuffling, referred to as ActShufNet. The intra-action shuffling branch lays out a self-supervised order prediction task to augment the video representation with inner-video relevance, whereas the inter-action shuffling branch imposes a reorganizing strategy on the existing action contents to augment the training set without resorting to any external resources. Furthermore, the global-local adversarial training is presented to enhance the models robustness to irrelevant noises. Extensive experiments are conducted on three benchmark datasets, and the results clearly demonstrate the efficacy of the proposed method.
Weakly-supervised temporal action localization aims to learn detecting temporal intervals of action classes with only video-level labels. To this end, it is crucial to separate frames of action classes from the background frames (i.e., frames not belonging to any action classes). In this paper, we present a new perspective on background frames where they are modeled as out-of-distribution samples regarding their inconsistency. Then, background frames can be detected by estimating the probability of each frame being out-of-distribution, known as uncertainty, but it is infeasible to directly learn uncertainty without frame-level labels. To realize the uncertainty learning in the weakly-supervised setting, we leverage the multiple instance learning formulation. Moreover, we further introduce a background entropy loss to better discriminate background frames by encouraging their in-distribution (action) probabilities to be uniformly distributed over all action classes. Experimental results show that our uncertainty modeling is effective at alleviating the interference of background frames and brings a large performance gain without bells and whistles. We demonstrate that our model significantly outperforms state-of-the-art methods on the benchmarks, THUMOS14 and ActivityNet (1.2 & 1.3). Our code is available at https://github.com/Pilhyeon/WTAL-Uncertainty-Modeling.
Weakly supervised temporal action localization aims to detect and localize actions in untrimmed videos with only video-level labels during training. However, without frame-level annotations, it is challenging to achieve localization completeness and relieve background interference. In this paper, we present an Action Unit Memory Network (AUMN) for weakly supervised temporal action localization, which can mitigate the above two challenges by learning an action unit memory bank. In the proposed AUMN, two attention modules are designed to update the memory bank adaptively and learn action units specific classifiers. Furthermore, three effective mechanisms (diversity, homogeneity and sparsity) are designed to guide the updating of the memory network. To the best of our knowledge, this is the first work to explicitly model the action units with a memory network. Extensive experimental results on two standard benchmarks (THUMOS14 and ActivityNet) demonstrate that our AUMN performs favorably against state-of-the-art methods. Specifically, the average mAP of IoU thresholds from 0.1 to 0.5 on the THUMOS14 dataset is significantly improved from 47.0% to 52.1%.
As a challenging task of high-level video understanding, weakly supervised temporal action localization has been attracting increasing attention. With only video annotations, most existing methods seek to handle this task with a localization-by-classification framework, which generally adopts a selector to select snippets of high probabilities of actions or namely the foreground. Nevertheless, the existing foreground selection strategies have a major limitation of only considering the unilateral relation from foreground to actions, which cannot guarantee the foreground-action consistency. In this paper, we present a framework named FAC-Net based on the I3D backbone, on which three branches are appended, named class-wise foreground classification branch, class-agnostic attention branch and multiple instance learning branch. First, our class-wise foreground classification branch regularizes the relation between actions and foreground to maximize the foreground-background separation. Besides, the class-agnostic attention branch and multiple instance learning branch are adopted to regularize the foreground-action consistency and help to learn a meaningful foreground classifier. Within each branch, we introduce a hybrid attention mechanism, which calculates multiple attention scores for each snippet, to focus on both discriminative and less-discriminative snippets to capture the full action boundaries. Experimental results on THUMOS14 and ActivityNet1.3 demonstrate the state-of-the-art performance of our method. Our code is available at https://github.com/LeonHLJ/FAC-Net.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا