No Arabic abstract
Email has remained a principal form of communication among people, both in enterprise and social settings. With a deluge of emails crowding our mailboxes daily, there is a dire need of smart email systems that can recover important emails and make personalized recommendations. In this work, we study the problem of predicting user triage actions to incoming emails where we take the reply prediction as a working example. Different from existing methods, we formulate the triage action prediction as a recommendation problem and focus on the content-based approach, where the users are represented using the content of current and past emails. We also introduce additional similarity features to further explore the affinities between users and emails. Experiments on the publicly available Avocado email collection demonstrate the advantages of our proposed recommendation framework and our method is able to achieve better performance compared to the state-of-the-art deep recommendation methods. More importantly, we provide valuable insight into the effectiveness of different textual and user representations and show that traditional bag-of-words approaches, with the help from the similarity features, compete favorably with the more advanced neural embedding methods.
The multilabel learning problem with large number of labels, features, and data-points has generated a tremendous interest recently. A recurring theme of these problems is that only a few labels are active in any given datapoint as compared to the total number of labels. However, only a small number of existing work take direct advantage of this inherent extreme sparsity in the label space. By the virtue of Restricted Isometry Property (RIP), satisfied by many random ensembles, we propose a novel procedure for multilabel learning known as RIPML. During the training phase, in RIPML, labels are projected onto a random low-dimensional subspace followed by solving a least-square problem in this subspace. Inference is done by a k-nearest neighbor (kNN) based approach. We demonstrate the effectiveness of RIPML by conducting extensive simulations and comparing results with the state-of-the-art linear dimensionality reduction based approaches.
New ranking algorithms are continually being developed and refined, necessitating the development of efficient methods for evaluating these rankers. Online ranker evaluation focuses on the challenge of efficiently determining, from implicit user feedback, which ranker out of a finite set of rankers is the best. Online ranker evaluation can be modeled by dueling ban- dits, a mathematical model for online learning under limited feedback from pairwise comparisons. Comparisons of pairs of rankers is performed by interleaving their result sets and examining which documents users click on. The dueling bandits model addresses the key issue of which pair of rankers to compare at each iteration, thereby providing a solution to the exploration-exploitation trade-off. Recently, methods for simultaneously comparing more than two rankers have been developed. However, the question of which rankers to compare at each iteration was left open. We address this question by proposing a generalization of the dueling bandits model that uses simultaneous comparisons of an unrestricted number of rankers. We evaluate our algorithm on synthetic data and several standard large-scale online ranker evaluation datasets. Our experimental results show that the algorithm yields orders of magnitude improvement in performance compared to stateof- the-art dueling bandit algorithms.
This paper proposes CF-NADE, a neural autoregressive architecture for collaborative filtering (CF) tasks, which is inspired by the Restricted Boltzmann Machine (RBM) based CF model and the Neural Autoregressive Distribution Estimator (NADE). We first describe the basic CF-NADE model for CF tasks. Then we propose to improve the model by sharing parameters between different ratings. A factored version of CF-NADE is also proposed for better scalability. Furthermore, we take the ordinal nature of the preferences into consideration and propose an ordinal cost to optimize CF-NADE, which shows superior performance. Finally, CF-NADE can be extended to a deep model, with only moderately increased computational complexity. Experimental results show that CF-NADE with a single hidden layer beats all previous state-of-the-art methods on MovieLens 1M, MovieLens 10M, and Netflix datasets, and adding more hidden layers can further improve the performance.
Recommender systems are being employed across an increasingly diverse set of domains that can potentially make a significant social and individual impact. For this reason, considering fairness is a critical step in the design and evaluation of such systems. In this paper, we introduce HyperFair, a general framework for enforcing soft fairness constraints in a hybrid recommender system. HyperFair models integrate variations of fairness metrics as a regularization of a joint inference objective function. We implement our approach using probabilistic soft logic and show that it is particularly well-suited for this task as it is expressive and structural constraints can be added to the system in a concise and interpretable manner. We propose two ways to employ the methods we introduce: first as an extension of a probabilistic soft logic recommender system template; second as a fair retrofitting technique that can be used to improve the fairness of predictions from a black-box model. We empirically validate our approach by implementing multiple HyperFair hybrid recommenders and compare them to a state-of-the-art fair recommender. We also run experiments showing the effectiveness of our methods for the task of retrofitting a black-box model and the trade-off between the amount of fairness enforced and the prediction performance.
In the enterprise email search setting, the same search engine often powers multiple enterprises from various industries: technology, education, manufacturing, etc. However, using the same global ranking model across different enterprises may result in suboptimal search quality, due to the corpora differences and distinct information needs. On the other hand, training an individual ranking model for each enterprise may be infeasible, especially for smaller institutions with limited data. To address this data challenge, in this paper we propose a domain adaptation approach that fine-tunes the global model to each individual enterprise. In particular, we propose a novel application of the Maximum Mean Discrepancy (MMD) approach to information retrieval, which attempts to bridge the gap between the global data distribution and the data distribution for a given individual enterprise. We conduct a comprehensive set of experiments on a large-scale email search engine, and demonstrate that the MMD approach consistently improves the search quality for multiple individual domains, both in comparison to the global ranking model, as well as several competitive domain adaptation baselines including adversarial learning methods.