Neuronal coupling benefits the encoding of weak periodic signals in symbolic spike patterns


Abstract in English

A good understanding of how neurons use electrical pulses (i.e, spikes) to encode the signal information remains elusive. Analyzing spike sequences generated by individual neurons and by two coupled neurons (using the stochastic FitzHugh-Nagumo model), recent theoretical studies have found that the relative timing of the spikes can encode the signal information. Using a symbolic method to analyze the spike sequence, preferred and infrequent spike patterns were detected, whose probabilities vary with both, the amplitude and the frequency of the signal. To investigate if this encoding mechanism is plausible also for neuronal ensembles, here we analyze the activity of a group of neurons, when they all perceive a weak periodic signal. We find that, as in the case of one or two coupled neurons, the probabilities of the spike patterns, now computed from the spike sequences of all the neurons, depend on the signals amplitude and period, and thus, the patterns probabilities encode the information of the signal. We also find that the resonances with the period of the signal or with the noise level are more pronounced when a group of neurons perceive the signal, in comparison with when only one or two coupled neurons perceive it. Neuronal coupling is beneficial for signal encoding as a group of neurons is able to encode a small-amplitude signal, which could not be encoded when it is perceived by just one or two coupled neurons. Interestingly, we find that for a group of neurons, just a few connections with one another can significantly improve the encoding of small-amplitude signals. Our findings indicate that information encoding in preferred and infrequent spike patterns is a plausible mechanism that can be employed by neuronal populations to encode weak periodic inputs, exploiting the presence of neural noise.

Download