Do you want to publish a course? Click here

A Similarity Measure for Material Appearance

79   0   0.0 ( 0 )
 Added by Manuel Lagunas
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present a model to measure the similarity in appearance between different materials, which correlates with human similarity judgments. We first create a database of 9,000 rendered images depicting objects with varying materials, shape and illumination. We then gather data on perceived similarity from crowdsourced experiments; our analysis of over 114,840 answers suggests that indeed a shared perception of appearance similarity exists. We feed this data to a deep learning architecture with a novel loss function, which learns a feature space for materials that correlates with such perceived appearance similarity. Our evaluation shows that our model outperforms existing metrics. Last, we demonstrate several applications enabled by our metric, including appearance-based search for material suggestions, database visualization, clustering and summarization, and gamut mapping.



rate research

Read More

Many different techniques for measuring material appearance have been proposed in the last few years. These have produced large public datasets, which have been used for accurate, data-driven appearance modeling. However, although these datasets have allowed us to reach an unprecedented level of realism in visual appearance, editing the captured data remains a challenge. In this paper, we present an intuitive control space for predictable editing of captured BRDF data, which allows for artistic creation of plausible novel material appearances, bypassing the difficulty of acquiring novel samples. We first synthesize novel materials, extending the existing MERL dataset up to 400 mathematically valid BRDFs. We then design a large-scale experiment, gathering 56,000 subjective ratings on the high-level perceptual attributes that best describe our extended dataset of materials. Using these ratings, we build and train networks of radial basis functions to act as functionals mapping the perceptual attributes to an underlying PCA-based representation of BRDFs. We show that our functionals are excellent predictors of the perceived attributes of appearance. Our control space enables many applications, including intuitive material editing of a wide range of visual properties, guidance for gamut mapping, analysis of the correlation between perceptual attributes, or novel appearance similarity metrics. Moreover, our methodology can be used to derive functionals applicable to classic analytic BRDF representations. We release our code and dataset publicly, in order to support and encourage further research in this direction.
BRDF models are ubiquitous tools for the representation of material appearance. However, there is now an astonishingly large number of different models in practical use. Both a lack of BRDF model standardisation across implementations found in different renderers, as well as the often semantically different capabilities of various models, have grown to be a major hindrance to the interchange of production assets between different rendering systems. Current attempts to solve this problem rely on manually finding visual similarities between models, or mathematical ones between their functional shapes, which requires access to the shader implementation, usually unavailable in commercial renderers. We present a method for automatic translation of material appearance between different BRDF models, which uses an image-based metric for appearance comparison, and that delegates the interaction with the model to the renderer. We analyse the performance of the method, both with respect to robustness and visual differences of the fits for multiple combinations of BRDF models. While it is effective for individual BRDFs, the computational cost does not scale well for spatially-varying BRDFs. Therefore, we further present a parametric regression scheme that approximates the shape of the transformation function and generates a reduced representation which evaluates instantly and without further interaction with the renderer. We present respective visual comparisons of the remapped SVBRDF models for commonly used renderers and shading models, and show that our approach is able to extrapolate transformed BRDF parameters better than other complex regression schemes.
A popular way to create detailed yet easily controllable 3D shapes is via procedural modeling, i.e. generating geometry using programs. Such programs consist of a series of instructions along with their associated parameter values. To fully realize the benefits of this representation, a shape program should be compact and only expose degrees of freedom that allow for meaningful manipulation of output geometry. One way to achieve this goal is to design higher-level macro operators that, when executed, expand into a series of commands from the base shape modeling language. However, manually authoring such macros, much like shape programs themselves, is difficult and largely restricted to domain experts. In this paper, we present ShapeMOD, an algorithm for automatically discovering macros that are useful across large datasets of 3D shape programs. ShapeMOD operates on shape programs expressed in an imperative, statement-based language. It is designed to discover macros that make programs more compact by minimizing the number of function calls and free parameters required to represent an input shape collection. We run ShapeMOD on multiple collections of programs expressed in a domain-specific language for 3D shape structures. We show that it automatically discovers a concise set of macros that abstract out common structural and parametric patterns that generalize over large shape collections. We also demonstrate that the macros found by ShapeMOD improve performance on downstream tasks including shape generative modeling and inferring programs from point clouds. Finally, we conduct a user study that indicates that ShapeMODs discovered macros make interactive shape editing more efficient.
We introduce a differential visual similarity metric to train deep neural networks for 3D reconstruction, aimed at improving reconstruction quality. The metric compares two 3D shapes by measuring distances between multi-view images differentiably rendered from the shapes. Importantly, the image-space distance is also differentiable and measures visual similarity, rather than pixel-wise distortion. Specifically, the similarity is defined by mean-squared errors over HardNet features computed from probabilistic keypoint maps of the compared images. Our differential visual shape similarity metric can be easily plugged into various 3D reconstruction networks, replacing their distortion-based losses, such as Chamfer or Earth Mover distances, so as to optimize the network weights to produce reconstructions with better structural fidelity and visual quality. We demonstrate this both objectively, using well-known shape metrics for retrieval and classification tasks that are independent from our new metric, and subjectively through a perceptual study.
Micro-appearance models have brought unprecedented fidelity and details to cloth rendering. Yet, these models neglect fabric mechanics: when a piece of cloth interacts with the environment, its yarn and fiber arrangement usually changes in response to external contact and tension forces. Since subtle changes of a fabrics microstructures can greatly affect its macroscopic appearance, mechanics-driven appearance variation of fabrics has been a phenomenon that remains to be captured. We introduce a mechanics-aware model that adapts the microstructures of cloth yarns in a physics-based manner. Our technique works on two distinct physical scales: using physics-based simulations of individual yarns, we capture the rearrangement of yarn-level structures in response to external forces. These yarn structures are further enriched to obtain appearance-driving fiber-level details. The cross-scale enrichment is made practical through a new parameter fitting algorithm for simulation, an augmented procedural yarn model coupled with a custom-design regression neural network. We train the network using a dataset generated by joint simulations at both the yarn and the fiber levels. Through several examples, we demonstrate that our model is capable of synthesizing photorealistic cloth appearance in a %dynamic and mechanically plausible way.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا