Interface-engineered hole doping in Sr2IrO4/LaNiO3 heterostructure


Abstract in English

The relativistic Mott insulator Sr2IrO4 driven by large spin-orbit interaction is known for the Jeff = 1/2 antiferromagnetic state which closely resembles the electronic structure of parent compounds of superconducting cuprates. Here, we report the realization of hole-doped Sr2IrO4 by means of interfacial charge transfer in Sr2IrO4/LaNiO3 heterostructures. X-ray photoelectron spectroscopy on Ir 4f edge along with the X-ray absorption spectroscopy at Ni L2 edge confirmed that 5d electrons from Ir sites are transferred onto Ni sites, leading to markedly electronic reconstruction at the interface. Although the Sr2IrO4/LaNiO3 heterostructure remains non-metallic, we reveal that the transport behavior is no longer described by the Mott variable range hopping mode, but by the Efros-Shklovskii model. These findings highlight a powerful utility of interfaces to realize emerging electronic states of the Ruddlesden-Popper phases of Ir-based oxides.

Download