Do you want to publish a course? Click here

The 2019 Taurid resonant swarm: prospects for ground detection of small NEOs

143   0   0.0 ( 0 )
 Added by David Clark
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In June 2019 the Earth will approach within 5{deg} mean anomaly of the centre of the Taurid resonant swarm, its closest post-perihelion encounter with Earth since 1975. This will be the best viewing geometry to detect and place limits on the number of NEOs proposed to reside at the swarm centre until the early 2030s. We present an analysis of the optimal times and pointing locations to image NEOs associated with the swarm



rate research

Read More

The Taurid meteoroid stream has long been linked with 2P/Encke owing to a good match of their orbital elements, even though the comets activity is not strong enough to explain the number of observed meteors. Various small NEOs have been discovered with orbits that can be linked to 2P and the Taurid meteoroid stream. Maribo and Sutters Mill are CM type carbonaceous chondrites that fell in Denmark on Jan 17, 2009 and Apr 22, 2012, respectively. Their pre-atmospheric orbits place them in the middle of the Taurid meteoroid stream, which raises the intriguing possibility that comet 2P could be the parent body of CM chondrites. To investigate whether a relationship between comet 2P, the Taurid complex associated NEOs, and CM chondrites exists, we performed photometric and spectroscopic studies of these objects in the visible wavelength range. We observed 2P and 10 NEOs on Aug 2, 2011 with FORS at the VLT. Images in the R filter, used to investigate the possible presence of cometary activity around the nucleus of 2P and the NEOs, show that no resolved coma is present. None of the FORS spectra show the 700 nm absorption feature due to hydrated minerals that is seen in the CM chondrite meteorites. All objects show featureless spectra with moderate reddening slopes at $lambda < 800$nm. Apart for 2003 QC10 and 1999 VT25, which show a flatter spectrum, the spectral slope of the observed NEOs is compatible with that of 2P. However, most of the NEOs show evidence of a silicate absorption in lower S/N data at $lambda > 800$nm, which is not seen in 2P, which suggests that they are not related. Despite similar orbits, we find no spectroscopic evidence for a link between 2P, the Taurid complex NEOs and the Maribo and Sutters Mill meteorites. However, we cannot rule out a connection to the meteorites either, as the spectral differences may be caused by secondary alteration of the surfaces of the NEOs.
Automated asteroid detection routines set requirements on the number of detections, signal-to-noise ratio, and the linearity of the expected motion in order to balance completeness, reliability, and time delay after data acquisition when identifying moving object tracklets. However, when the full-frame data from a survey are archived, they can be searched later for asteroids that were below the initial detection thresholds. We have conducted such a search of the first three years of the reactivated NEOWISE data, looking for near-Earth objects discovered by ground-based surveys that have previously unreported thermal infrared data. Using these measurements, we can then perform thermal modeling to measure the diameters and albedos of these objects. We present new physical properties for 116 Near-Earth Objects found in this search.
Large or even medium sized asteroids impacting the Earth can cause damage on a global scale. Existing and planned concepts for finding near-Earth objects (NEOs) with diameter of 140 m or larger would take ~15-20 years of observation to find ~90% of them. This includes both ground and space based projects. For smaller NEOs (~50-70 m in diameter), the time scale is many decades. The reason it takes so long to detect these objects is because most of the NEOs have highly elliptical orbits that bring them into the inner solar system once per orbit. If these objects cross the Earths orbit when the Earth is on the other side of the Sun, they will not be detected by facilities on or around the Earth. A constellation of MicroSats in orbit around the Sun can dramatically reduce the time needed to find 90% of NEOs ~100-140 m in diameter.
Gamma-ray Bursts (GRB) were discovered by satellite-based detectors as powerful sources of transient $gamma$-ray emission. The Fermi satellite detected an increasing number of these events with its dedicated Gamma-ray Burst Monitor (GBM), some of which were associated with high energy photons $(E > 10, mathrm{GeV})$, by the Large Area Telescope (LAT). More recently, follow-up observations by Cherenkov telescopes detected very high energy emission $(E > 100, mathrm{GeV})$ from GRBs, opening up a new observational window with implications on the interpretation of their central engines and on the propagation of very energetic photons across the Universe. Here, we use the data published in the 2nd Fermi-LAT Gamma Ray Burst Catalogue to characterise the duration, luminosity, redshift and light curve of the high energy GRB emission. We extrapolate these properties to the very high energy domain, comparing the results with available observations and with the potential of future instruments. We use observed and simulated GRB populations to estimate the chances of detection with wide-field ground-based $gamma$-ray instruments. Our analysis aims to evaluate the opportunities of the Southern Wide-field-of-view Gamma-ray Observatory (SWGO), to be installed in the Southern Hemisphere, to complement CTA. We show that a low-energy observing threshold $(E_{low} < 200, mathrm{GeV})$, with good point source sensitivity $(F_{lim} approx 10^{-11}, mathrm{erg, cm^{-2}, s^{-1}}$ in $1, mathrm{yr})$, are optimal requirements to work as a GRB trigger facility and to probe the burst spectral properties down to time scales as short as $10, mathrm{s}$, accessing a time domain that will not be available to IACT instruments.
The Desert Fireball Network observed a significant outburst of fireballs belonging to the Southern Taurid Complex of meteor showers between October 27 and November 17, 2015. At the same time, the Cameras for Allsky Meteor Surveillance project detected a distinct population of smaller meteors belonging to the irregular IAU shower #628, the s-Taurids. While this returning outburst was predicted and observed in previous work, the reason for this stream is not yet understood. 2015 was the first year that the stream was precisely observed, providing an opportunity to better understand its nature. We analyse the orbital elements of stream members, and establish a size frequency distribution from millimetre to metre size range. The stream is highly stratified with a large change of entry speed along Earths orbit. We confirm that the meteoroids have orbital periods near the 7:2 mean-motion resonance with Jupiter. The mass distribution of this population is dominated by larger meteoroids, unlike that for the regular Southern Taurid shower. The distribution index is consistent with a gentle collisional fragmentation of weak material. A population of metre-sized objects is identified from satellite observations at a rate consistent with a continuation of the size-frequency distribution established at centimetre size. The observed change of longitude of perihelion among the s-Taurids points to recent (a few centuries ago) activity from fragmentation involving surviving asteroid 2015TX24. This supports a model for the Taurid Complex showers that involves an ongoing fragmentation cascade of comet 2P/Encke siblings following a breakup some 20,000 years ago.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا