Do you want to publish a course? Click here

Near-Infrared Variability of Low Mass Stars in IC 1396A and TR 37

136   0   0.0 ( 0 )
 Added by George Rieke
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have monitored nearly a square degree in IC 1396A/Tr 37 over 21 epochs extending over 2014 - 2016 for sources variable in the JHK bands. In our data, 65 +- 8 % of previously identified cluster members show variations, compared with < 0.3% of field stars. We identify 119 members of Tr 37 on the basis of variability, forming an unbiased sample down to the brown dwarf regime. The K-band luminosity function in Tr 37 is similar to that of IC 348 but shifted to somewhat brighter values, implying that the K- and M-type members of Tr 37 are younger than those in IC 348. We introduce methods to classify the causes of variability, based on behavior in the color-color and color-magnitude diagrams. Accretion hot spots cause larger variations at J than at K with substantial scatter in the diagrams; there are at least a dozen, with the most active resembling EXors. Eleven sources are probably dominated by intervention of dust clumps in their circumstellar disks with color behavior indicating the presence of grains larger than for interstellar dust, presumably due to grain growth in their disks. Thirteen sources have larger variations at K than at J or H. For 11 of them, the temperature fitted to the variable component is very close to 2000K, suggesting that the changes in output are caused by turbulence at the inner rim of the circumstellar disk exposing previously protected populations of grains.



rate research

Read More

We have used Spitzer/IRAC to conduct a photometric monitoring program of the IC1396A dark globule in order to study the mid-IR (3.6 - 8 micron) variability of the heavily embedded Young Stellar Objects (YSOs) present in that area. We obtained light curves covering a 14 day timespan with a twice daily cadence for 69 YSOs, and continuous light curves with approximately 12 second cadence over 7 hours for 38 YSOs. Typical accuracies for our relative photometry were 1-2% for the long timespan data and a few mmag, corresponding to less than 0.5%, for the 7 hour continuous staring-mode data. More than half of the YSOs showed detectable variability, with amplitudes from ~0.05 mag to ~0.2 mag. About thirty percent of the YSOs showed quasi-sinusoidal light curve shapes with apparent periods from 5-12 days and light curve amplitudes approximately independent of wavelength over the IRAC bandpasses. We have constructed models which simulate the time dependent spectral energy distributions of Class I and I I YSOs in order to attempt to explain these light curves. Based on these models, the apparently periodic light curves are best explained by YSO models where one or two high latitude photospheric spots heat the inner wall of the circumstellar disk, and where we view the disk at fairly large inclination angle. Disk inhomogeneities, such as increasing the height where the accretion funnel flows to the stellar hotspot, enhances the light curve modulations. The other YSOs in our sample show a range of light curve shapes, some of which are probably due to varying accretion rate or disk shadowing events. One star, IC1396A-47, shows a 3.5 hour periodic light curve; this object may be a PMS Delta Scuti star.
115 - Samrat Ghosh 2020
We present here optical I-band photometric variability study down to $simeq$ 19 mag of a young ($sim$2-3 Myr) star-forming region IC 348 in the Perseus molecular cloud. We aim to explore the fast rotation (in the time-scales of hours) in Very Low Mass stars (VLMs) including Brown Dwarfs (BDs). From a sample of 177 light-curves using our new I-band observations, we detect new photometric variability in 22 young M-dwarfs including 6 BDs, which are bonafide members in IC 348 and well-characterized in the spectral type of M-dwarfs. Out of 22 variables, 11 M dwarfs including one BD show hour-scale periodic variability in the period range 3.5 - 11 hours and rest are aperiodic in nature. Interestingly, an optical flare is detected in a young M2.75 dwarf in one night data on 20 December 2016. From the flare light curve, we estimate the emitted flared energy of 1.48 $times$ 10$^{35}$ ergs. The observed flared energy with an uncertainty of tens of per cent is close to the super-flare range ($sim$ 10$^{34}$ ergs), which is rarely observed in active M dwarfs.
We present a catalog of periodic stellar variability in the Stripe 82 region of the Sloan Digital Sky Survey (SDSS). After aggregating and recalibrating catalog-level data from the survey, we ran a period-finding algorithm (Supersmoother) on all point-source lightcurves. We used color selection to identify systems that are likely to contain low-mass stars, in particular M dwarfs and white dwarfs. In total, we found 207 candidates, the vast majority of which appear to be in eclipsing binary systems. The catalog described in this paper includes 42 candidate M dwarf / white dwarf pairs, 4 white-dwarf pairs, 59 systems whose colors indicate they are composed of 2 M dwarfs and whose lightcurve shapes suggest they are in detached eclipsing binaries, and 28 M dwarf systems whose lightcurve shapes suggest they are in contact binaries. We find no detached systems with periods longer than 3 days, thus the majority of our sources are likely to have experienced orbital spin-up and enhanced magnetic activity. Indeed, twenty-six of twenty-seven M dwarf systems that we have spectra for show signs of chromospheric magnetic activity, far higher than the 24% seen in field stars of the same spectral type. We also find binaries composed of stars that bracket the expected boundary between partially and fully convective interiors, which will allow the measurement of the stellar mass-radius relationship across this transition. The majority of our contact systems have short orbital periods, with small variance (0.02 days) in the sample near the observed cutoff of 0.22 days. The accumulation of these stars at short orbital period suggests that the process of angular momentum loss, leading to period evolution, becomes less efficient at short periods. (Abridged)
Using the United Kingdom Infrared Telescope on Mauna Kea, we have carried out a new near-infrared J, H, K monitoring survey of almost a square degree of the star-forming Orion Nebula Cluster with observations on 120 nights over three observing seasons, spanning a total of 894 days. We monitored ~15,000 stars down to J=20 using the WFCAM instrument, and have extracted 1203 significantly variable stars from our data. By studying variability in young stellar objects (YSOs) in the H-K, K color-magnitude diagram, we are able to distinguish between physical mechanisms of variability. Many variables show color behavior indicating either dust-extinction or disk/accretion activity, but we find that when monitored for longer periods of time, a number of stars shift between these two variability mechanisms. Further, we show that the intrinsic timescale of disk/accretion variability in young stars is longer than that of dust-extinction variability. We confirm that variability amplitude is statistically correlated with evolutionary class in all bands and colors. Our investigations of these 1203 variables have revealed 73 periodic AA Tau type variables, many large-amplitude and long-period (P > 15 day) YSOs, including three stars showing widely-spaced periodic brightening events consistent with circumbinary disk activity, and four new eclipsing binaries. These phenomena and others indicate the activity of long-term disk/accretion variability processes taking place in young stars. We have made the light curves and associated data for these 1203 variables available online.
161 - S. Ertel , D. Defr`ere , O.Absil 2016
Context: Extended circumstellar emission has been detected within a few 100 milli-arcsec around > 10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims: We aim to demonstrate the persistence of the phenomenon over time scales of a few years and to search for variability of our previously detected excesses. Methods: Using VLTI/PIONIER in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected with the same observing technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results: In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2 sigma, and in 7 of 16 follow-up observations significant excess (> 3 sigma) has been re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources. Conclusions: We conclude that the phenomenon responsible for the excesses persists over time scales of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا