Do you want to publish a course? Click here

Matlab vs. OpenCV: A Comparative Study of Different Machine Learning Algorithms

60   0   0.0 ( 0 )
 Added by Waleed Yousef
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Scientific Computing relies on executing computer algorithms coded in some programming languages. Given a particular available hardware, algorithms speed is a crucial factor. There are many scientific computing environments used to code such algorithms. Matlab is one of the most tremendously successful and widespread scientific computing environments that is rich of toolboxes, libraries, and data visualization tools. OpenCV is a (C++)-based library written primarily for Computer Vision and its related areas. This paper presents a comparative study using 20 different real datasets to compare the speed of Matlab and OpenCV for some Machine Learning algorithms. Although Matlab is more convenient in developing and data presentation, OpenCV is much faster in execution, where the speed ratio reaches more than 80 in some cases. The best of two worlds can be achieved by exploring using Matlab or similar environments to select the most successful algorithm; then, implementing the selected algorithm using OpenCV or similar environments to gain a speed factor.



rate research

Read More

When dealing with multi-class classification problems, it is common practice to build a model consisting of a series of binary classifiers using a learning paradigm which dictates how the classifiers are built and combined to discriminate between the individual classes. As new data enters the system and the model needs updating, these models would often need to be retrained from scratch. This work proposes three learning paradigms which allow trained models to be updated without the need of retraining from scratch. A comparative analysis is performed to evaluate them against a baseline. Results show that the proposed paradigms are faster than the baseline at updating, with two of them being faster at training from scratch as well, especially on larger datasets, while retaining a comparable classification performance.
We introduce Geomstats, an open-source Python toolbox for computations and statistics on nonlinear manifolds, such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie groups of transformations, and many more. We provide object-oriented and extensively unit-tested implementations. Among others, manifolds come equipped with families of Riemannian metrics, with associated exponential and logarithmic maps, geodesics and parallel transport. Statistics and learning algorithms provide methods for estimation, clustering and dimension reduction on manifolds. All associated operations are vectorized for batch computation and provide support for different execution backends, namely NumPy, PyTorch and TensorFlow, enabling GPU acceleration. This paper presents the package, compares it with related libraries and provides relevant code examples. We show that Geomstats provides reliable building blocks to foster research in differential geometry and statistics, and to democratize the use of Riemannian geometry in machine learning applications. The source code is freely available under the MIT license at url{geomstats.ai}.
Dimensionality reduction is a important step in the development of scalable and interpretable data-driven models, especially when there are a large number of candidate variables. This paper focuses on unsupervised variable selection based dimensionality reduction, and in particular on unsupervised greedy selection methods, which have been proposed by various researchers as computationally tractable approximations to optimal subset selection. These methods are largely distinguished from each other by the selection criterion adopted, which include squared correlation, variance explained, mutual information and frame potential. Motivated by the absence in the literature of a systematic comparison of these different methods, we present a critical evaluation of seven unsupervised greedy variable selection algorithms considering both simulated and real world case studies. We also review the theoretical results that provide performance guarantees and enable efficient implementations for certain classes of greedy selection function, related to the concept of submodularity. Furthermore, we introduce and evaluate for the first time, a lazy implementation of the variance explained based forward selection component analysis (FSCA) algorithm. Our experimental results show that: (1) variance explained and mutual information based selection methods yield smaller approximation errors than frame potential; (2) the lazy FSCA implementation has similar performance to FSCA, while being an order of magnitude faster to compute, making it the algorithm of choice for unsupervised variable selection.
69 - Rui He , Shan He , Ke Tang 2021
Building classifiers on multiple domains is a practical problem in the real life. Instead of building classifiers one by one, multi-domain learning (MDL) simultaneously builds classifiers on all the domains. MDL utilizes the information shared among the domains to improve the performance. As a supervised learning problem, the labeling effort is still high in MDL problems. Usually, this high labeling cost issue could be relieved by using active learning. Thus, it is natural to utilize active learning to reduce the labeling effort in MDL, and we refer this setting as multi-domain active learning (MDAL). However, there are only few works which are built on this setting. And when the researchers have to face this problem, there is no off-the-shelf solution. Under this circumstance, combining the current multi-domain learning models and single-domain active learning strategies might be a preliminary solution for MDAL problem. To find out the potential of this preliminary solution, a comparative study over 5 models and 4 active learning strategies is made in this paper. To the best of our knowledge, this is the first work provides the formal definition of MDAL. Besides, this is the first comparative work for MDAL problem. From the results, the Multinomial Adversarial Networks (MAN) model with a simple best vs second best (BvSB) uncertainty strategy shows its superiority in most cases. We take this combination as our off-the-shelf recommendation for the MDAL problem.
Predicting the evolution of the brain network, also called connectome, by foreseeing changes in the connectivity weights linking pairs of anatomical regions makes it possible to spot connectivity-related neurological disorders in earlier stages and detect the development of potential connectomic anomalies. Remarkably, such a challenging prediction problem remains least explored in the predictive connectomics literature. It is a known fact that machine learning (ML) methods have proven their predictive abilities in a wide variety of computer vision problems. However, ML techniques specifically tailored for the prediction of brain connectivity evolution trajectory from a single timepoint are almost absent. To fill this gap, we organized a Kaggle competition where 20 competing teams designed advanced machine learning pipelines for predicting the brain connectivity evolution from a single timepoint. The competing teams developed their ML pipelines with a combination of data pre-processing, dimensionality reduction, and learning methods. Utilizing an inclusive evaluation approach, we ranked the methods based on two complementary evaluation metrics (mean absolute error (MAE) and Pearson Correlation Coefficient (PCC)) and their performances using different training and testing data perturbation strategies (single random split and cross-validation). The final rank was calculated using the rank product for each competing team across all evaluation measures and validation strategies. In support of open science, the developed 20 ML pipelines along with the connectomic dataset are made available on GitHub. The outcomes of this competition are anticipated to lead to the further development of predictive models that can foresee the evolution of brain connectivity over time, as well as other types of networks (e.g., genetic networks).

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا