Do you want to publish a course? Click here

Theory for the stationary polariton response in the presence of vibrations

51   0   0.0 ( 0 )
 Added by Kalle Kansanen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct a model describing the response of a hybrid system where the electromagnetic field - in particular, surface plasmon polaritons - couples strongly with electronic excitations of atoms or molecules. Our approach is based on the input-output theory of quantum optics, and in particular it takes into account the thermal and quantum vibrations of the molecules. The latter is described within the $P(E)$ theory analogous to that used in the theory of dynamical Coulomb blockade. As a result, we are able to include the effect of the molecular Stokes shift on the strongly coupled response of the system. Our model then accounts for the asymmetric emission from upper and lower polariton modes. It also allows for an accurate description of the partial decoherence of the light emission from the strongly coupled system. Our results can be readily used to connect the response of the hybrid modes to the emission and fluorescence properties of the individual molecules, and thus are relevant in understanding any utilization of such systems, like coherent light harvesting.



rate research

Read More

We study the elastic response of a stationarily driven system of a cavity field strongly coupled with molecular excitons, taking into account the main dissipation channels due to the finite cavity linewidth and molecular vibrations. We show that the frequently used coupled oscillator model fails in describing this response especially due to the non-Lorentzian dissipation of the molecules to their vibrations. Signatures of this failure are the temperature dependent minimum point of the polariton peak splitting, uneven polariton peak height at the minimum splitting, and the asymmetric shape of the polariton peaks even at the experimentally accessed zero-detuning point. Using a rather generic yet representative model of molecular vibrations, we predict the polariton response in various conditions, depending on the temperature, molecular Stokes shift and vibration frequencies, and the size of the Rabi splitting. Our results can be used as a sanity check of the experiments trying to prove results originating from strong coupling, such as vacuum-enhanced chemical reaction rate.
Recent ultrafast optical experiments show that excitons in large biological light-harvesting complexes are coupled to molecular vibration modes. These high-frequency vibrations will not only affect the optical response, but also drive the exciton transport. Here, using a model dimer system, the frequency of the underdamped vibration is shown to have a strong effect on the exciton dynamics such that quantum coherent oscillations in the system can be present even in the case of strong noise. Two mechanisms are identified to be responsible for the enhanced transport efficiency: critical damping due to the tunable effective strength of the coupling to the bath, and resonance coupling where the vibrational frequency coincides with the energy gap in the system. The interplay of these two mechanisms determines parameters responsible for the most efficient transport, and these optimal control parameters are comparable to those in realistic light-harvesting complexes. Interestingly, oscillations in the excitonic coherence at resonance are suppressed in comparison to the case of an off-resonant vibration.
We propose a novel scheme for coupling a Rydberg state to a stationary light polariton, based on a dual-V level scheme. We investigate the properties of the resulting stationary Rydberg polariton, and show that its form and its quadratic dispersion relation closely resemble that of the stationary light polariton of the underlying dual-V scheme. We consider the influence of a Rydberg impurity on the system and find strong interaction-induced absorption of the involved probe field. The proposed scheme for a stationary Rydberg polariton might find applications for realizing interacting polaritons with increased interaction time.
We study the effect of laser phase noise on the generation of stationary entanglement between an intracavity optical mode and a mechanical resonator in a generic cavity optomechanical system. We show that one can realize robust stationary optomechanical entanglement even in the presence of non-negligible laser phase noise. We also show that the explicit form of the laser phase noise spectrum is relevant, and discuss its effect on both optomechanical entanglement and ground state cooling of the mechanical resonator.
We present a method for accelerating adiabatic protocols for systems involving a coupling to a continuum, one that cancels both non-adiabatic errors as well as errors due to dissipation. We focus on applications to a generic quantum state transfer problem, where the goal is to transfer a state between a single level or mode, and a propagating temporal mode in a waveguide or transmission line. Our approach enables perfect adiabatic transfer protocols in this setup, despite a finite protocol speed and a finite waveguide coupling. Our approach even works in highly constrained settings, where there is only a single time-dependent control field available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا