No Arabic abstract
We investigate the redshift evolution of the intrinsic alignments (IA) of galaxies in the texttt{MassiveBlackII} (MBII) simulation. We select galaxy samples above fixed subhalo mass cuts ($M_h>10^{11,12,13}~M_{odot}/h$) at $z=0.6$ and trace their progenitors to $z=3$ along their merger trees. Dark matter components of $z=0.6$ galaxies are more spherical than their progenitors while stellar matter components tend to be less spherical than their progenitors. The distribution of the galaxy-subhalo misalignment angle peaks at $sim10~mathrm{deg}$ with a mild increase with time. The evolution of the ellipticity-direction~(ED) correlation amplitude $omega(r)$ of galaxies (which quantifies the tendency of galaxies to preferentially point towards surrounding matter overdensities) is governed by the evolution in the alignment of underlying dark matter~(DM) subhaloes to the matter density of field, as well as the alignment between galaxies and their DM subhaloes. At scales $sim1~mathrm{cMpc}/h$, the alignment between DM subhaloes and matter overdensity gets suppressed with time, whereas the alignment between galaxies and DM subhaloes is enhanced. These competing tendencies lead to a complex redshift evolution of $omega(r)$ for galaxies at $sim1~mathrm{cMpc}/h$. At scales $>1~mathrm{cMpc}/h$, alignment between DM subhaloes and matter overdensity does not evolve significantly; the evolution of the galaxy-subhalo misalignment therefore leads to an increase in $omega(r)$ for galaxies by a factor of $sim4$ from $z=3$ to $0.6$ at scales $>1~mathrm{cMpc}/h$. The balance between competing physical effects is scale dependant, leading to different conclusions at much smaller scales($sim0.1~mathrm{Mpc}/h$).
We study the alignments of satellite galaxies, and their anisotropic distribution, with respect to location and orientation of their host central galaxy in MassiveBlack-II and IllustrisTNG simulations. We find that: the shape of the satellite system in halos of mass ($> 10^{13}h^{-1}M_{odot}$) is well aligned with the shape of the central galaxy at $z=0.06$ with the mean alignment between the major axes being $sim Delta theta = 12^{circ}$ when compared to a uniform random distribution; that satellite galaxies tend to be anisotropically distributed along the major axis of the central galaxy with a stronger alignment in halos of higher mass or luminosity; and that the satellite distribution is more anisotropic for central galaxies with lower star formation rate, which are spheroidal, and for red central galaxies.Radially we find that satellites tend to be distributed along the major axis of the shape of the stellar component of central galaxies at smaller scales and the dark matter component on larger scales. We find that the dependence of satellite anisotropy on central galaxy properties and the radial distance is similar in both the simulations with a larger amplitude in MassiveBlack-II. The orientation of satellite galaxies tends to point toward the location of the central galaxy at small scales and this correlation decreases with increasing distance, and the amplitude of satellite alignment is higher in high mass halos. However, the projected ellipticities do not exhibit a scale-dependent radial alignment, as has been seen in some observational measurements.
We compare the shapes and intrinsic alignments of galaxies in the MassiveBlack-II cosmological hydrodynamic simulation (MBII) to those in a dark matter-only (DMO) simulation performed with the same volume (100$h^{-1}$Mpc)$^{3}$, cosmological parameters, and initial conditions. Understanding the impact of baryonic physics on galaxy shapes and alignments and their relation to the dark matter distribution should prove useful to map the intrinsic alignments of galaxies from hydrodynamic to dark matter-only simulations. We find that dark matter subhalos are typically rounder in MBII, and the shapes of stellar matter in low mass galaxies are more misaligned with the shapes of the dark matter of the corresponding subhalos in the DMO simulation. At $z=0.06$, the fractional difference in the mean misalignment angle between MBII and DMO simulations varies from $sim 28 % - 12 %$ in the mass range $10^{10.8} - 6.0 times 10^{14} h^{-1}M_{odot}$. We study the dark matter halo shapes and alignments as a function of radius, and find that while galaxies in MBII are more aligned with the inner parts of their dark matter subhalos, there is no radial trend in their alignments with the corresponding subhalo in the DMO simulation. This result highlights the importance of baryonic physics in determining the alignment of the galaxy with respect to the inner parts of the halo. Finally, we compare the ellipticity-direction (ED) correlation for galaxies to that for dark matter halos, finding that it is suppressed on all scales by stellar-dark matter misalignment. In the projected shape-density correlation ($w_{delta+}$), which includes ellipticity weighting, this effect is partially canceled by the higher mean ellipticities of the stellar component, but differences of order $30-40%$ remain on scales $> 1$ Mpc over a range of subhalo masses, with scale-dependent effects below $1$ Mpc.
Intrinsic galaxy alignments constitute the major astrophysical systematic of forthcoming weak gravitational lensing surveys but also yield unique insights into galaxy formation and evolution. We build analytic models for the distribution of galaxy shapes based on halo properties extracted from the Millennium Simulation, differentiating between early- and late-type galaxies as well as central galaxies and satellites. The resulting ellipticity correlations are investigated for their physical properties and compared to a suite of current observations. The best-faring model is then used to predict the intrinsic alignment contamination of planned weak lensing surveys. We find that late-type galaxy models generally have weak intrinsic ellipticity correlations, marginally increasing towards smaller galaxy separation and higher redshift. The signal for early-type models at fixed halo mass strongly increases by three orders of magnitude over two decades in galaxy separation, and by one order of magnitude from z=0 to z=2. The intrinsic alignment strength also depends strongly on halo mass, but not on galaxy luminosity at fixed mass, or galaxy number density in the environment. We identify models that are in good agreement with all observational data, except that all models over-predict alignments of faint early-type galaxies. The best model yields an intrinsic alignment contamination of a Euclid-like survey between 0.5-10% at z>0.6 and on angular scales larger than a few arcminutes. Cutting 20% of red foreground galaxies using observer-frame colours can suppress this contamination by up to a factor of two.
Intrinsic alignments (IA), correlations between the intrinsic shapes and orientations of galaxies on the sky, are both a significant systematic in weak lensing and a probe of the effect of large-scale structure on galactic structure and angular momentum. In the era of precision cosmology, it is thus especially important to model IA with high accuracy. Efforts to use cosmological perturbation theory to model the dependence of IA on the large-scale structure have thus far been relatively successful; however, extant models do not consistently account for time evolution. In particular, advection of galaxies due to peculiar velocities alters the impact of IA, because galaxy positions when observed are generally different from their positions at the epoch when IA is believed to be set. In this work, we evolve the galaxy IA from the time of galaxy formation to the time at which they are observed, including the effects of this advection, and show how this process naturally leads to a dependence of IA on the velocity shear. We calculate the galaxy-galaxy-IA bispectrum to tree level (in the linear matter density) in terms of the evolved IA coefficients. We then discuss the implications for weak lensing systematics as well as for studies of galaxy formation and evolution. We find that considering advection introduces nonlocality into the bispectrum, and that the degree of nonlocality represents the memory of a galaxys path from the time of its formation to the time of observation. We discuss how this result can be used to constrain the redshift at which IA is determined and provide Fisher estimation for the relevant measurements using the example of SDSS-BOSS.
The intrinsic correlations of galaxy shapes and orientations across the large-scale structure of the Universe are a known contaminant to weak gravitational lensing. They are known to be dependent on galaxy properties, such as their mass and morphologies. The complex interplay between alignments and the physical processes that drive galaxy evolution remains vastly unexplored. We assess the sensitivity of intrinsic alignments (shapes and angular momenta) to Active Galactic Nuclei -AGN- feedback by comparing galaxy alignment in twin runs of the cosmological hydrodynamical Horizon simulation, which do and do not include AGN feedback respectively. We measure intrinsic alignments in three dimensions and in projection at z=0 and z=1. We find that the projected alignment signal of all galaxies with resolved shapes with respect to the density field in the simulation is robust to AGN feedback, thus giving similar predictions for contamination to weak lensing. The relative alignment of galaxy shapes around galaxy positions is however significantly impacted, especially when considering high-mass ellipsoids. Using a sample of galaxy twins across simulations, we determine that AGN changes both the galaxy selection and their actual alignments. Finally, we measure the alignments of angular momenta of galaxies with their nearest filament. Overall, these are more significant in the presence of AGN as a result of the higher abundance of massive pressure-supported galaxies.