Many-body effects on the thermodynamics of closed quantum systems


Abstract in English

Thermodynamics of quantum systems out-of-equilibrium is very important for the progress of quantum technologies, however, the effects of many body interactions and their interplay with temperature, different drives and dynamical regimes is still largely unknown. Here we present a systematic study of these interplays: we consider a variety of interaction (from non-interacting to strongly correlated) and dynamical (from sudden quench to quasi-adiabatic) regimes, and draw some general conclusions in relation to work extraction and entropy production. As treatment of many-body interacting systems is highly challenging, we introduce a simple approximation which includes, for the average quantum work, many-body interactions only via the initial state, while the dynamics is fully non-interacting. We demonstrate that this simple approximation is surprisingly good for estimating both the average quantum work and the related entropy variation, even when many-body correlations are significant.

Download