Do you want to publish a course? Click here

Dynamics of the critical Casimir force for a conserved order parameter after a critical quench

125   0   0.0 ( 0 )
 Added by Markus Gross
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fluctuation-induced forces occur generically when long-ranged correlations (e.g., in fluids) are confined by external bodies. In classical systems, such correlations require specific conditions, e.g., a medium close to a critical point. On the other hand, long-ranged correlations appear more commonly in certain non-equilibrium systems with conservation laws. Consequently, a variety of non-equilibrium fluctuation phenomena, including fluctuation-induced forces, have been discovered and explored recently. Here, we address a long-standing problem of non-equilibrium critical Casimir forces emerging after a quench to the critical point in a confined fluid with order-parameter-conserving dynamics and non-symmetry-breaking boundary conditions. The interplay of inherent (critical) fluctuations and dynamical non-local effects (due to density conservation) gives rise to striking features, including correlation functions and forces exhibiting oscillatory time-dependences. Complex transient regimes arise, depending on initial conditions and the geometry of the confinement. Our findings pave the way for exploring a wealth of non-equilibrium processes in critical fluids (e.g., fluctuation-mediated self-assembly or aggregation). In certain regimes, our results are applicable to active matter.



rate research

Read More

The critical Casimir force (CCF) arises from confining fluctuations in a critical fluid and thus it is a fluctuating quantity itself. While the mean CCF is universal, its (static) variance has previously been found to depend on the microscopic details of the system which effectively set a large-momentum cutoff in the underlying field theory, rendering it potentially large. This raises the question how the properties of the force variance are reflected in experimentally observable quantities, such as the thickness of a wetting film or the position of a suspended colloidal particle. Here, based on a rigorous definition of the instantaneous force, we analyze static and dynamic correlations of the CCF for a conserved fluid in film geometry for various boundary conditions within the Gaussian approximation. We find that the dynamic correlation function of the CCF is independent of the momentum cutoff and decays algebraically in time. Within the Gaussian approximation, the associated exponent depends only on the dynamic universality class but not on the boundary conditions. We furthermore consider a fluid film, the thickness of which can fluctuate under the influence of the time-dependent CCF. The latter gives rise to an effective non-Markovian noise in the equation of motion of the film boundary and induces a distinct contribution to the position variance. Within the approximations used here, at short times, this contribution grows algebraically in time whereas, at long times, it saturates and contributes to the steady-state variance of the film thickness.
We study the dynamical response of a system to a sudden change of the tuning parameter $lambda$ starting (or ending) at the quantum critical point. In particular we analyze the scaling of the excitation probability, number of excited quasiparticles, heat and entropy with the quench amplitude and the system size. We extend the analysis to quenches with arbitrary power law dependence on time of the tuning parameter, showing a close connection between the scaling behavior of these quantities with the singularities of the adiabatic susceptibilities of order $m$ at the quantum critical point, where $m$ is related to the power of the quench. Precisely for sudden quenches the relevant susceptibility of the second order coincides with the fidelity susceptibility. We discuss the generalization of the scaling laws to the finite temperature quenches and show that the statistics of the low-energy excitations becomes important. We illustrate the relevance of those results for cold atoms experiments.
97 - Spyros Sotiriadis 2015
One of the fundamental principles of statistical physics is that only partial information about a systems state is required for its macroscopic description. This is not only true for thermal ensembles, but also for the unconventional ensemble, known as Generalized Gibbs Ensemble (GGE), that is expected to describe the relaxation of integrable systems after a quantum quench. By analytically studying the quench dynamics in a prototypical one-dimensional critical model, the massless free bosonic field theory, we find evidence of a novel type of equilibration characterized by the preservation of an enormous amount of memory of the initial state that is accessible by local measurements. In particular, we show that the equilibration retains memory of non-Gaussian initial correlations, in contrast to the case of massive free evolution which erases all such memory. The GGE in its standard form, being a Gaussian ensemble, fails to predict correctly the equilibrium values of local observables, unless the initial state is Gaussian itself. Our findings show that the equilibration of a broad class of quenches whose evolution is described by Luttinger liquid theory with an initial state that is non-Gaussian in terms of the bosonic field, is not correctly captured by the corresponding bosonic GGE, raising doubts about the validity of the latter in general one-dimensional gapless integrable systems such as the Lieb-Liniger model. We also propose that the same experiment by which the GGE was recently observed [Langen et al., Science 348 (2015) 207-211] can also be used to observe its failure, simply by starting from a non-Gaussian initial state.
Using general scaling arguments combined with mean-field theory we investigate the critical ($T simeq T_c$) and off-critical ($T e T_c$) behavior of the Casimir forces in fluid films of thickness $L$ governed by dispersion forces and exposed to long-ranged substrate potentials which are taken to be equal on both sides of the film. We study the resulting effective force acting on the confining substrates as a function of $T$ and of the chemical potential $mu$. We find that the total force is attractive both below and above $T_c$. If, however, the direct substrate-substrate contribution is subtracted, the force is repulsive everywhere except near the bulk critical point $(T_c,mu_c)$, where critical density fluctuations arise, or except at low temperatures and $(L/a) (betaDelta mu) =O(1)$, with $Delta mu=mu-mu_c <0$ and $a$ the characteristic distance between the molecules of the fluid, i.e., in the capillary condensation regime. While near the critical point the maximal amplitude of the attractive force if of order of $L^{-d}$ in the capillary condensation regime the force is much stronger with maximal amplitude decaying as $L^{-1}$. Essential deviations from the standard finite-size scaling behavior are observed within the finite-size critical region $L/xi=O(1)$ for films with thicknesses $L lesssim L_{rm crit}$, where $L_{rm crit}=xi_0^pm (16 |s|)^{ u/beta}$, with $ u$ and $beta$ as the standard bulk critical exponents and with $s=O(1)$ as the dimensionless parameter that characterizes the relative strength of the long-ranged tail of the substrate-fluid over the fluid-fluid interaction. We present the modified finite-size scaling pertinent for such a case and analyze in detail the finite-size behavior in this region.
We investigate the evolution of string order in a spin-1 chain following a quantum quench. After initializing the chain in the Affleck-Kennedy-Lieb-Tasaki state, we analyze in detail how string order evolves as a function of time at different length scales. The Hamiltonian after the quench is chosen either to preserve or to suddenly break the symmetry which ensures the presence of string order. Depending on which of these two situations arises, string order is either preserved or lost even at infinitesimal times in the thermodynamic limit. The fact that non-local order may be abruptly destroyed, what we call string-order melting, makes it qualitatively different from typical order parameters in the manner of Landau. This situation is thoroughly characterized by means of numerical simulations based on matrix product states algorithms and analytical studies based on a short-time expansion for several simplified models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا