Do you want to publish a course? Click here

Scalable GWR: A linear-time algorithm for large-scale geographically weighted regression with polynomial kernels

116   0   0.0 ( 0 )
 Added by Daisuke Murakami
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Although a number of studies have developed fast geographically weighted regression (GWR) algorithms for large samples, none of them has achieved linear-time estimation, which is considered a requisite for big data analysis in machine learning, geostatistics, and related domains. Against this backdrop, this study proposes a scalable GWR (ScaGWR) for large datasets. The key improvement is the calibration of the model through a pre-compression of the matrices and vectors whose size depends on the sample size, prior to the leave-one-out cross-validation, which is the heaviest computational step in conventional GWR. This pre-compression allows us to run the proposed GWR extension so that its computation time increases linearly with the sample size. With this improvement, the ScaGWR can be calibrated with one million observations without parallelization. Moreover, the ScaGWR estimator can be regarded as an empirical Bayesian estimator that is more stable than the conventional GWR estimator. We compare the ScaGWR with the conventional GWR in terms of estimation accuracy and computational efficiency using a Monte Carlo simulation. Then, we apply these methods to a US income analysis. The code for ScaGWR is available in the R package scgwr. The code is embedded into C++ code and implemented in another R package, GWmodel.

rate research

Read More

We develop a new robust geographically weighted regression method in the presence of outliers. We embed the standard geographically weighted regression in robust objective function based on $gamma$-divergence. A novel feature of the proposed approach is that two tuning parameters that control robustness and spatial smoothness are automatically tuned in a data-dependent manner. Further, the proposed method can produce robust standard error estimates of the robust estimator and give us a reasonable quantity for local outlier detection. We demonstrate that the proposed method is superior to the existing robust version of geographically weighted regression through simulation and data analysis.
We introduce a new approach to a linear-circular regression problem that relates multiple linear predictors to a circular response. We follow a modeling approach of a wrapped normal distribution that describes angular variables and angular distributions and advances it for a linear-circular regression analysis. Some previous works model a circular variable as projection of a bivariate Gaussian random vector on the unit square, and the statistical inference of the resulting model involves complicated sampling steps. The proposed model treats circular responses as the result of the modulo operation on unobserved linear responses. The resulting model is a mixture of multiple linear-linear regression models. We present two EM algorithms for maximum likelihood estimation of the mixture model, one for a parametric model and another for a non-parametric model. The estimation algorithms provide a great trade-off between computation and estimation accuracy, which was numerically shown using five numerical examples. The proposed approach was applied to a problem of estimating wind directions that typically exhibit complex patterns with large variation and circularity.
Multi-task learning is increasingly used to investigate the association structure between multiple responses and a single set of predictor variables in many applications. In the era of big data, the coexistence of incomplete outcomes, large number of responses, and high dimensionality in predictors poses unprecedented challenges in estimation, prediction, and computation. In this paper, we propose a scalable and computationally efficient procedure, called PEER, for large-scale multi-response regression with incomplete outcomes, where both the numbers of responses and predictors can be high-dimensional. Motivated by sparse factor regression, we convert the multi-response regression into a set of univariate-response regressions, which can be efficiently implemented in parallel. Under some mild regularity conditions, we show that PEER enjoys nice sampling properties including consistency in estimation, prediction, and variable selection. Extensive simulation studies show that our proposal compares favorably with several existing methods in estimation accuracy, variable selection, and computation efficiency.
With the rapid development of data collection and aggregation technologies in many scientific disciplines, it is becoming increasingly ubiquitous to conduct large-scale or online regression to analyze real-world data and unveil real-world evidence. In such applications, it is often numerically challenging or sometimes infeasible to store the entire dataset in memory. Consequently, classical batch-based estimation methods that involve the entire dataset are less attractive or no longer applicable. Instead, recursive estimation methods such as stochastic gradient descent that process data points sequentially are more appealing, exhibiting both numerical convenience and memory efficiency. In this paper, for scalable estimation of large or online survival data, we propose a stochastic gradient descent method which recursively updates the estimates in an online manner as data points arrive sequentially in streams. Theoretical results such as asymptotic normality and estimation efficiency are established to justify its validity. Furthermore, to quantify the uncertainty associated with the proposed stochastic gradient descent estimator and facilitate statistical inference, we develop a scalable resampling strategy that specifically caters to the large-scale or online setting. Simulation studies and a real data application are also provided to assess its performance and illustrate its practical utility.
The cost of both generalized least squares (GLS) and Gibbs sampling in a crossed random effects model can easily grow faster than $N^{3/2}$ for $N$ observations. Ghosh et al. (2020) develop a backfitting algorithm that reduces the cost to $O(N)$. Here we extend that method to a generalized linear mixed model for logistic regression. We use backfitting within an iteratively reweighted penalized least square algorithm. The specific approach is a version of penalized quasi-likelihood due to Schall (1991). A straightforward version of Schalls algorithm would also cost more than $N^{3/2}$ because it requires the trace of the inverse of a large matrix. We approximate that quantity at cost $O(N)$ and prove that this substitution makes an asymptotically negligible difference. Our backfitting algorithm also collapses the fixed effect with one random effect at a time in a way that is analogous to the collapsed Gibbs sampler of Papaspiliopoulos et al. (2020). We use a symmetric operator that facilitates efficient covariance computation. We illustrate our method on a real dataset from Stitch Fix. By properly accounting for crossed random effects we show that a naive logistic regression could underestimate sampling variances by several hundred fold.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا